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Determination of the Age Distribution of Sea Ice
from Lagrangian Observations of Ice Motion

Ronald Kwok, Member, IEEE, D. Andrew Rothrock, Harry L. Stern, and Glenn F. Cunningham

Abstract—A procedure for monitoring the local age distribution
of the Arctic sea ice cover is presented. The age distribution
specifies the area covered by ice in different age classes. In our
approach, a regular array of grid points is defined initially on
the first image of a long time series, and an ice tracker finds
the positions of those points in all subsequent images of the
series. These Lagrangian points mark the corners of a set of cells
that move and deform with the ice cover. The area of each cell
changes with each new image or time step. A positive change
indicates that ice in a new age class was formed in the cell.
A negative change is assumed to have ridged the youngest ice
in the cell, reducing its area. The ice in each cell ages as it
progresses through the time series. The area of multiyear ice in
each cell is computed using an ice classification algorithm. Any
area that is not accounted for by the young ice or multiyear ice
is assigned to a category of older first-year ice. We thus have a
fine age resolution in the young end of the age distribution, and
coarse resolution for older ice. The age distribution of the young
ice can be converted to a thickness distribution using a simple
empirical relation between accumulated freezing-degree days and
ice thickness, or using a more complicated thermodynamic model.
We describe a general scheme for implementing this procedure
for the Arctic Ocean from fall freeze-up until the onset of melt
in the spring. The concept is illustrated with a time series of five
ERS-1 SAR images spanning a period of 12 days. Such a scheme
could be implemented with RADARSAT SAR imagery to provide
basin-wide ice age and thickness information.

I. INTRODUCTION

HE age distribution of sea ice specifies the fractional area
Tcovered by ice in different age classes as a function of
time. This ice distribution is a fundamental quantity that can be
measured by ice tracking by keeping track of the area changes
of deforming cells. In the Arctic Ocean in winter, new ice
forms from freezing sea water that is exposed by the opening
of leads in the ice cover. These horizontal openings manifest
themselves as additions of areas to the local ice cover and are
directly observable in time sequences of Synthetic Aperture
Radar (SAR) imagery. The new ice in these leads ages and
thickens. Repeated temporal sampling of these elemental areas
provides us with an indication of when new areas or leads were
created, the length of their existence, and thus a record of
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their age. The resolution of age is dependent on the sampling
interval. With some knowledge of the heat exchange between
the atmosphere and ocean, the observed ice age distribution
can be used to estimate the ice thickness distribution.

The estimation of the thickness distribution is the motiva-
tion for tracking the ice age distribution. Among the many
properties of sea ice strongly dependent upon its thickness
are compressive strength, rate of growth, surface temperature,
turbulent and radiative heat exchange with the atmosphere, salt
content and brine flux into the oceanic mixed layer [1]. Our
present knowledge of the Arctic ice thickness distribution is
derived largely from analysis of sonar data from submarine
cruises. More recently, moorings with upward looking sonars
have also been used to sample the thickness distribution at
fixed locations. These and other remote sensing techniques
under development for measurement of the ice thickness are
reviewed in [2], [3]. These instruments typically provide a one
dimensional transect of ice draft (or equivalently, thickness).
The data are useful for computing the volume transport of ice
through a region or building up a climatology of mean ice
thickness over a long period of time.

In this paper, we describe a procedure that provides con-
tinual estimates of local age and thickness distributions of the
Arctic sea ice cover. We note at the outset that the algorithm
works only during the winter and also that it provides a fine
age resolution of only the young end of the age distribution.

The method incorporates two algorithms that are operational
in the Geophysical Processor System (GPS) at the Alaska
SAR Facility (ASF). The current GPS routinely produces ice
motion products and ice type images using ERS-1 SAR images
as input [4]. Briefly, the ice tracking algorithm operates on
pairs of images separated in time by three or more days,
using a combination of area-matching and feature-matching
techniques to track a regular array of points from the first
image to the second image. This provides a set of ice displace-
ment vectors on a fixed grid [5], [6]. The ice type algorithm
uses a maximum likelihood classifier and a look-up table
of expected backscatter characteristics to assign each image
pixel to one of four classes: multiyear ice, deformed first-
year ice, undeformed first-year ice, and a low backscatter type
characteristic of smooth, younger ice types and calm open
water [7]. These two algorithms are combined as follows.

II. OVERVIEW OF PROCEDURE

We assume that as a data source we have access to a long
time sequence of SAR images acquired over some region of
the Arctic Ocean. Initially, a regular array of points is defined
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on the first image of the series. These points constitute the
corners of a regular array of square cells, say, five kilometers
on a side. The ice features at these points are identified and
tracked in each of the subsequent images in the time series
using the GPS ice tracking algorithm. Each point acquires
its own trajectory, and the array of cells moves and deforms
with the ice cover. This differs slightly from the current GPS
ice tracking strategy, in which the motion from each pair of
images is referred to an Earth-fixed grid, giving an Eulerian
picture of the displacement field. Here, we use the tracking
algorithm to follow the same set of points over a long time,
giving a Lagrangian picture of the motion. We refer to the time
interval between sequential images as a time step. During each
time step the cell areas change. A positive change indicates
that new ice was formed in the cell. A negative change is
assumed to have ridged the youngest ice in the cell, reducing
its area. The age classes are determined by the lengths of the
time steps. The area of ice in each age class in each cell is
updated at each time step. In this way, we keep track of the
age distribution of the young ice.

The area of multiyear ice in each cell is also computed at
each time step using the GPS ice classification algorithm. The
classification accuracy for multiyear ice is around 95% [8].
Two possible sources of error are from wind-roughened open
water and from frost flowers growing on new ice. Both of these
physical phenomena result in highly variable radar backscatter,
causing the classifier to label these pixels sometimes incor-
rectly as multiyear ice. The time series of multiyear ice area
for each cell is used to resolve these ambiguities, resulting in a
more accurate classification. Since the area of muitiyear (MY)
ice should remain constant (because no MY ice is created in
the winter), any anomaly shows up as a transient spike or hump
that can be filtered out. The filtering procedure is discussed in
more detail in Section [V. The ice classification algorithm is
not used to identify areas of first-year ice because the accuracy
of the classifier is lower for these ice types. Since the areas
of young ice and multiyear ice in each cell are accounted for
by the procedures described above, and the total area of each
cell is known from its geometry, the residual area is simply
labeled as first-year ice. For a series of five images with, say,
three days between successive images, the age classes would
be: 0-3 days, 3-6 days, 6-9 days, 9-12 days, first-year ice,
and multiyear ice.

Fields of surface air temperature from the National Me-
teorological Center (NMC) are assimilated by our algorithm
and interpolated to the cell locations. With these temperatures
throughout the times series, the young end of the age distribu-
tion can be converted to a thickness distribution using a simple
empirical relation between accumulated freezing-degree days
and ice thickness [9], or using a more complicated thermody-
namic model. We note our scheme cannot say anything about
the thickness of first-year or multiyear ice. The present method
provides a two-dimensional, potentially basin-wide picture of
the thickness of young ice, but it does not give any information
about the mean thickness of the ice cover as a whole, since
young ice occupies only a small fraction of the total area.
The main output product of our age analysis procedure is the
thickness distribution of young ice at a fine spatial resolution

Fig. 1. Lagrangian observations of motion in SAR imagery. The five images
(Image 1D’s: 15073, 15109, 15147, 15183, 16245) in the time sequence with
overlayed deformation grids (the image product information is shown in Table
D.

and the areal fraction of first-year and multiyear ice at regular
time intervals.

When the Canadian Radarsat is launched in Jan. 1995, its
imaging radar will have the capability to cover the entire Arctic
Ocean every seven days with its wide swath (500 kilometer)
ScanSAR mode [10]. We envision using this data and the
procedure described herein to compute the age distribution
of sea ice in the Arctic, starting at freeze-up in the fall
and continuing until the onset of melt in the spring. The
summer months cannot be treated because open water does
not necessarily freeze into ice, and because the radar signature
of multiyear ice in the summer is more variable.

Section II1 gives the computational and bookkeeping details
of determining and updating the age distribution at each time
step, including two examples from a time series of ERS-1 SAR
images. Section 1V outlines the general procedure for finding
the age and thickness distributions throughout the winter,
including some of the difficulties that still must be overcome.
Concluding remarks are contained in the last section.

1IT. COMPUTATIONAL DETAILS AND EXAMPLES

First, we describe how we relate cell area changes to ice
age. A cell is the area within an image defined by the straight-
line segments connecting four grid or nodal points. Then,
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Fig. 2. Determination of ice age distribution and thickness destribution in a grid cell extracted from the time sequence (Example 1). (a) The image sequence
showing the deformation of a grid cell. (b) Plot of area changes as a function of time, and age histograms computed from the area changes. (c) Plot of the
freezing-degree days and the computed thickness of the ice. (1 pixel = 100m x 100m = 10000m? = unit area).

we discuss a computational procedure to determine the age TABLE I

distribution of ice within a cell. We want to estimate the areal ’MAGF SEQLSJENCE (T“;F' L"IZA“‘?N A};DAAVERATQF TEM‘:ER?TURE
. . . . Y re

contribution By ; of each age category j at time t; to the mage Sequence (Time, Location and Average temperatu

: p Image No./ID | Time (DOY:HH) | Rev | Image Center | Temperature (°C)
total observed area. The age {esolutlon is depend.ent’on the 1715073 TR 3509 | 73,298/ 153.70W =
frequency of observation of a given cell. The sampling interval 2/15109 080:22 3552 | 73.40N/153.64W -20
is constant in the examples shown here although this does 3/15147 083:22 3595 ) 73.20N/153.81W -20

v h be th Th [ sch £ 4/15183 086:22 3538 | 73.20N/153.82W -19
not necessarily have to be the case. The general scheme for 5/16245 089:22 3581 | 73.30N/153.80W 17
operating the procedure on a basin-wide scale is discussed in
the next section. TABLE II

RECORD OF PARAMETERS (AREA CHANGES, AGE
DISTRIBUTION) FROM TIME-SEQUENCE ANALYSIS

Record Time Mean Cell Age Distribution
Temp, T Area, A B
A. Age from Cell Area Changes 1 2! Av Bypy.Bimy
'g A . 8 . 2 2 T Az By, Bapy,Bamy
Fig. 2 shows a cell in a sequence of five SAR images shown 3 ty T3 A3 Bsy,Bya, Bypy, Bamy
4 ty T, Ay Bya, Bua, By3, Bory, Bamy

in Fig. 1. The increase in cell area, between Day 077 and Day
086, due to the continual opening of a lead, is evident. A X & T A
closing event (between Day 086 and 089) caused a decrease
in area of the cell. The area change during each time interval
is plotted in Fig. 2(b). Any new area is assumed to have been inequalities
produced between the time of the two images. Any loss in
area is assumed to have depleted the area of the youngest
ice created earlier. The multiyear ice area within the cell is We describe how the age table is constructed using the
estimated from the backscatter histogram from within the cell.  symbolic notation in Table 1I. Actual numerical examples are
These data are recorded and tabulated. Each record applies shown in a later section. The index k denotes time ¢;; the index
to the time of one scene and records the change since the last j denotes age class, increasing with class age. T} denotes the
observation. These are the fundamental data for computing the mean temperature during the time interval [tx,tr_1]; Ay is
age distribution. The age distribution, By, j, is a set of areas the area of the cell at time .

of different age classes. By ; denotes the area of ice at time The quantity Bj pry is the area of multiyear (MY) ice
tr of age category j. That is, the age of the ice satisfies the in the cell at time ¢;, as determined from the backscatier

Bra, Bia,- - -, Bra-1, Bury, Bumy

be — te—(j—1) < ageg; <tp —tg—; for j=2tok—1.
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within the cell. We use the ice classification algorithm in the
GPS for this purpose. Theoretically this should not depend
on k (time), but errors in the classification of multiyear
ice can result from wind-blown open water or frost flowers
[8], [11]. These confounding effects can be identified and
removed by considering the time series of the multiyear ice
area: By py,Ba My, , By,my. This filtering problem is
discussed later. The quantity By ry is the area of ice in the
cell at time ¢; older than ¢; — ¢; but younger than muitiyear
ice, i.e., it is the older first-year (FY) ice. The oldest ice (other
than FY and MY) which is observed in this procedure is
dependent on the length of time required to “integrate” out
the initial conditions (discussed in Section IV). At time £, the
area By py is computed from the backscatter within the cell,
as described above, and the area B, py is computed as the
residual Al - Bl,MY-

B. Age Distribution Within a Cell

Suppose that the complete age histogram is known at time
tk—1

By_11,Br_12,+ ,Br—1.k—2. Br_1,ry, Be—1,my

The computational procedure to obtain the histogramBj, ;
at time t; is as follows:
1) The first step is a shift of the histogram that represents
the aging process.
B j« Br-1,;-1 for j=2tok-1
For example, the first equation By o < By 1 says that
the area of ice at time ¢;_; (which was older than O
but younger than {1 — {,_2) is transferred into the
class of ice that is older than ¢, — ¢;_1 but younger than
tr —tr_o. In other words, we have added At = ¢ —fr_1
to the upper and lower bounds of the age class. A similar
interpretation applies to the other equations. Note that
By 1 is not defined yet. It is determined in the next step.

2) Compute the new total cell area, Ay, from the new
positions of the grid points. Compute the change in cell
area since the previous time: AA = A~ Ag_1. The area
of the youngest ice class is now By ; = max (0,AA4). In
other words, if new area was created (A A >0) then set
the area of the youngest class to AA. If area was lost
(AA <0) then set the area of the youngest class to zero.
Step 4 accounts for any loss in area.

3) If AA >0 then skip to step 5.

4) This step is only executed when the cell area decreases
(AA <0). We need to remove the area AA from the
histogram. We first remove area from the next class By 2
and then older classes, as necessary, until a total area
reduction of A A is achieved. The assumption is that we
are ridging the youngest ice first.

5) The area of multiyear ice By psy is computed from the
backscatter within the cell using the GPS ice classifica-
tion algorithm.

6) The area of older first-year ice is computed as the
residual area:

Biry = Ax — [Bg1 + Bga+ -+ + B k-1 + Be,my ]

This completes the determination of the areas By ; at
time ¢,. The procedure is repeated whenever Lagrangian
observations of grid points are available.

C. Two Examples

1) Data Description

Time Series Dataset: We selected a time series of five
ERS-1 SAR images to demonstrate the procedure for the
determination of ice age distribution. Table I shows the tem-
poral and spatial information related to the image frames
within the time sequence. These images of the central Beaufort
Sea were acquired in 1992 and span a period of 12 days
from Mar. 18-30. The sampling interval or time step of the
sequence is 3 days. The SAR images, each covering an area
of approximately 100 km x 100 km with pixel size of 100
m X 100 m, were processed at ASF and resampled to a polar
stereographic projection.

Air Temperature: The 1000 mb air temperature field used
in our analysis is a product distributed by the National Meteo-
rological Center (NMC). These temperature fields are available
twice daily at 0Z and 12Z. The temperature at the image center
locations during the time of data acquisition are shown in Table
I. We use the air temperature to compute the freezing-degree
days which is used as input to the procedure for converting the
ice age distribution into ice thickness distribution in Section
Iv.

Ice Tracking/Ice Typing: As previously mentioned, the
present Geophysical Processor System has an ice tracker
which produces an Eulerian ice motion product from image
pairs. The tracker uses a combination of image matching
by correlation of the image intensities and feature matching
of the boundaries separating the ice types [5] to derive the
displacement vectors at the grid points. The vectors give
the displacements of the ice features initially defined on an
Earth-fixed SSM/I grid (Assas/1, dssay/r) to new geographic
locations [A(At),¢(At)] in the interval At, separating an
image pair. We modified the GPS ice tracker to generate the
following time sequence of positions for each grid point over
a sequence of k images to provide the trajectory of the these
grid points, viz.

[A(t1), ¢(t1)] = [Mt2), d(t2)] — [A(ta), é(t3)]
= = [Mtk), p(te)]

where X and ¢ represent the geographic location (longitude,
latitude) of the points. The grid points and cells from the
Lagrangian tracker are shown in Fig. 1. The dimension of
the initial grid size is 5 km x 5 km.

The ice types used in our procedure are generated by the
ice type classification algorithm in the GPS. The ice type algo-
rithm utilizes first-order backscatter to classify pixel intensities
into different ice types. The ice type product classifies Arctic
winter SAR imagery into four ice types: multiyear (MY), first-
year deformed (FY-D), first-year undeformed (FY-U) and a
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Fig. 3. Determination of ice age distribution and thickness destribution in a grid cell extracted from the time sequence (Example 2). (a) The image sequence
showing the deformation of a grid cell. (b) Plot of area changes as a function of time, and age histograms computed from the area changes. (c) Plot of the
freezing-degree days and the computed thickness of the ice. (1 pixel = 100m x 100m = 10000m? = unit area).

TABLE II
RECORD OF PARAMETERS (AREA CHANGES, AGE DISTRIBUTION)
FROM TIME-SEQUENCE ANALYSIS (EXAMPLE 1)

Record Time Mean Cell FDD Area® of Age Class j
(DAY:HH) Temp, T Area, A* 1 2 3 4 FY MY
1 077:22 -23 2500 1164 1336
2 080:22 -20 3034 65 534 598 1902
3 083:22 -20 3205 126 171 534 536 1964
4 086:22 -19 3317 166 112 171 534 1046 1454
5 089:22 -17 3235 229 0 30 171 534 1235 1265

* 1 pixel = 100m x 100m = 10000 m? = unit area
FDD = Cumulative freezing-degree days

low backscatter type characteristic of smooth, younger ice
types and calm open water. We emphasize, in this paper, that
we use the ice classifier to determine only the MY fraction and
that the interpretation of non-MY ice types does not present
itself as an issue in our discussion. ‘

2) Examples

Example 1: We are assuming, in the two examples here,
that the initial distribution contains only FY and MY in the
cells. Table III and Fig. 2 illustrate a few steps in the procedure.
The increase in cell area, between Day 077 and Day 086, due
to the continual opening of a lead, is evident. The area changes
of the cell as a function of time are plotted in Fig. 2(b). This
cell had an initial area of 2500 units, 1336 of which were
classified as multiyear ice. Over the first time interval (Day
077 to Day 080), the area increased to 3034, giving a young
ice class, Ba 1 (which is between 0-3 days old), an area of 534
units. The remaining 1164 units were assigned to the first-year
ice class of undetermined age. The cell area increased to 3205

and 3317 during the second (Day 080 and 083) and third (Day
083 and 086) time intervals, respectively. This new area of
171 units created during the second time interval replaces the
534 units as the youngest age group. Similarly, the 112 units
created during the third time interval replaces the 171 units
as having the youngest age. The 534 units created during the
first time interval have become 3-6 days and 6-9 days old,
during the second and third time intervals, respectively, and
represent the aging of the ice from By to Bs 3. A closing
event (between Day 086 and 089) caused a decrease in cell
area from 3317 to 3235, or 82 units. At this time step, the
newest age class (Bs; = 0) has zero area since no new
area was created, and the next youngest class loses 82 units
to account for the lost cell area. 1265 units were classified
as MY ice, leaving 1235 units of old FY ice. Note that the
area of MY ice does not remain constant throughout the 12-
day period. This is due to the high backscatter of the open
lead, the signature of which overlaps with that of the MY
ice backscatter, leading to an over estimation of MY ice. We
discuss a procedure to resolve this classification error in the
next section.

Example 2: Table 1V shows the results from the temporal
evolution of the grid cell in Fig. 3. The grid cell is extracted
from the image time-series. This cell increased in area during
the first three time intervals, with a decrease in area during the
last time interval in the sequence. The total decrease in area
of 284 units during the last time interval is accounted for by
decreasing the area of the three youngest age classes. The MY
ice area remained relatively constant during the whole time
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TABLE IV
RECORD OF PARAMETERS (AREA CHANGES, AGE DISTRIBUTION)
FROM TIME-SEQUENCE ANALYSIS (EXAMPLE 2)

Record Time Mesn Cel FDD Area® of Age Class 7
(DAY:HH) Temp, T Area, A* 1 2 3 4 FY MY
1 077:22 -23 2500 692 1808
2 080:22 -20 2736 65 236 575 1925
3 083:22 -20 2807 126 71 236 612 1888
4 086:22 -19 2081 166 112 71 236 540 1960
5 089:22 -17 2697 29 0 0 0 197 588 1912

* 1 pixel = 100m x 100m = 10000 m? = unit area
FDD = Cumulative freezing-degree days
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Fig. 4. Plot of tne area of MY ice, By a1y, in the two grid cells. (a) Grid cell
1; (b) Grid cell 2. Dashed line shows the average MY area, Apsy, computed
using the procedure in the text. (1 pixel = 100m x 100m = 10000m? = unit
area).

sequence because the backscatter of the ice in the leads was
low in this case.

IV. DISCUSSION OF GENERAL SCHEME

We have discussed the computation of the age distribution
within a cell. Now, we address some of the unresolved
technical issues associated with mechanizing such a scheme
for observation of the age distribution of sea ice in the
entire winter Arctic using a seasonal time sequence of SAR
observations. The block diagram for the entire scheme is
shown in Fig. 4.

A. Determination of Ice Age Distribution

Initial Conditions: The age distribution needs to be initial-
ized at fall freeze-up. Since we do not know the ice age
distribution at freeze-up, observations must be made for a
period of time before the initial conditions or initial age
distribution no longer affect the age distribution estimates. This
start-up period is determined by the oldest age class (excluding
FY and MY) we decide to track. For example, if the oldest
desired age class is 30 days, then it will take 30 days for the
initial conditions (young ice present at start-up) to grow into
the FY category. Or, the initial distribution of ice in the 0-30
range would have “aged” beyond the range of observation.
After this period, the initial conditions are determined and
the age distribution will be correctly represented with the
computational procedure above.

Multiyear Ice Fraction: As previously noted, the presence
of wind-blown open water or frost flowers on thinner ice could
cause the ice classifier to over-estimate the area of multiyear
ice even though the winter signature of multiyear ice has been
shown to be stable [12]. Using the time series of multiyear ice
for a particular cell, Biay, B2 amy, B3 my, - these mis-

INCREMENT TIME STEP

H RESOLVE INCONSISTENCIES
IN MY Al
COMPUTE THICKNESS
DISTRIBUTION

Block diagram showing the general scheme.

Fig. 5.

classification events can be identified as positive spikes or
humps. Filtering out these events leaves the “background”
or true multiyear ice area. This may still not be perfectly
constant since the cell boundaries (straight lines connecting
the corner nodes) are not necessarily material boundaries and
these moving edges can cause ice to shift into or out of a cell.
Ideally,

N N
Ay — Ay :Z Bk,]_z Bi_1; J#F MY
=1 t

Or, all changes in cell area have to be accounted for by
changes in area of the non-MY ice categories. The sum is
over all non-MY categories. Here, we illustrate an alternate
way to estimate an average area of MY ice, Ay, using the
time series of By ary. Let m = min (By ay) for all &, and

S = {k : Bk’My < 1.1m}.
Then,

Any = Average (B avy) for kinS.

Or, the estimate of the MY ice fraction is given by the
average of all By ary’s less than 1.05 times the minimum of
By ary. The assumption is that mis-classification leads to an
overestimate of MY ice and that the error in classification is
approximately 5%. We use this simple procedure to estimate
the average MY ice area. Fig. 5 shows By asy for the two
grid cell examples used in the previous section; the dashed
line indicates the average MY ice area, A,sy, determined
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Fig. 6.

with this procedure. In the first example, the newly-opened
lead has a backscatter signature which overlaps with that of
MY ice and therefore increased the estimated areal fraction
of MY ice in the grid cell. As the ice in the lead aged, its
backscatter evolved toward a more FY ice-like signature and
appearance, resulting in a decrease in area of MY ice. The
MY ice area returned to approximately its area before the lead
opened. The second example shows that the backscatter of the
ice in the leads remained low and therefore did not confound
the backscatter-based classifier. In both cases, a reasonable
estimate of the MY ice fraction was obtained. Once the best
estimate of multiyear ice at each time ¢, is obtained from the
filtered time series, the areas of older first-year ice By ry at
each time ¢, need to be adjusted as well, using the new value
‘of B kMY -

Freezing-Degree Days: 1t is the freezing rate, not temper-
ature or time alone, that tells the thermal history of each age
class. To be able to convert age to ice thickness or to keep
the required information when we interpolate ice age to a
different grid, we must know the freezing rate. We approximate
this rate as being proportional to the number of freezing-
degree days (FDD) associated with each age class of each
cell. In Table I, we have recorded the mean temperature, 7},
over each time interval [t),t,—1]. We assume a suitable data
product of surface air temperature from buoys and possibly
NMC temperatures has been defined. It is obvious that the
accuracy of the temperature field is important. The ice in the
most recent age class (k, 1) has a maximum FDD of

Fey =Tp(te — tg—1).

All older classes have FDD equal to the sum of the F, ; back
to their birth at time #3_;4:

Frj=Fea+ Fro11+ Froo1

+ 4 Fy_jp1n for j=2t0k-1

Hence, a record of the FDD is kept for each cell.

Missing Grid Points: Occasionally the tracking algorithm
fails to find a match for a tie point. In the current GPS,
this shows up simply as a hole in the displacement field.

Example showing the addition of a grid point when the strain between two grid points exceed a threshold of 1.1.

For the long time sequence observations, where we want to
keep track of cell properties, it means that for these cells
the boundaries of four cells are not defined. We suggest the
following alternatives to handle missing grid points:

1) Refine the matching/tracking scheme. Tracking fails
because of low correlations between source and target
images. This can happen if the tiepoint falls in a region
undergoing a large deformation. Typically such regions
are long and narrow. By placing the correlation window
off-center with respect to the initial tie point location,
it is possible that the new window will lie entirely on
one rigid piece of ice, rather than spanning the zone
between two moving pieces. This could help increase
the correlation and identify more tiepoints that are very
close to shear zones. Another option that is available to a
Lagrangian tracker is to look at several previous images,
rather that just the most recent image, when performing
the correlation.

2) If a match still cannot be found, place the tie point in the
most likely spot according to some interpolation scheme.

3) As an alternative to 2), combine the four cells around
the missing nodal point into one big cell. This is an
attractive procedure only if the frequency of resorting to
this alternative is small, otherwise we will end up with
large holes with no grid points.

Careful evaluation of these alternatives based on complexity

and computational loading is required.

Regridding/Adding New Grid Points: As cells become “too
deformed,” nodes will have to be replaced by regridding.
Adaptive regridding and moving meshes are techniques in use
by finite element modelers. Two possible regridding strategies
can be implemented: 1) Regrid each month (or other time
interval) to a standard square grid; 2) Regrid locally when
a cell becomes too deformed. Either of the options requires
information such as area and freezing degree-days to be
transferred or interpolated from an irregular grid to a regular
one. We leave this as an issue here; suffice it to say that a

. strategy for addressing the deformation problem needs to be

considered. An alternative to regridding is to create additional
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Fig. 7 Ice thickness as a function of freezing-degree days from the empirical
formulas of Anderson (A), Lebedev (L), and Zubov (Z) [9].

grid points to define the cell boundaries if the deformation
becomes too large. We illustrate this with an example (Fig.
6). In this case, the strain (L — L,)/L, (L, and L are the
length of the line segments connecting two tiepoints before and
after deformation, respectively) between two points exceeded
a pre-set threshold (1.1) and a point was added between the
two points. This minimizes the problem of uncertainty in the
true material boundaries by maintaining a nominal sampling
interval of the cell boundaries. We also note that when the
deformation of an ice parcel is too high e.g., in the marginal
ice zones, the gridding scheme suggested here may fail. In
this case, we may have to avoid working close (less than 50
km) to the coast.

B. Conversion to Ice Thickness Distribution

We convert the age distribution, Bj ;, to the thickness
distribution, hy_ ;, with a simple procedure which utilizes the
dependence of thickness, (H), on freezing-degree days, F,

Hy j = f(Fr;)-

For each area of young ice, By ;, there are upper and lower
bounds on the age of the ice. Consequently there are two values
of F, upper and lower bounds, that apply to each By ;. This
corresponds to the maximum or upper bound on the freezing-
degree days for the ice in that age class. The minimum or
lower bound is F} ;_;. We do not keep track of F' for the FY
and MY classes. Thus the thickness range of ice in By ; is,

J(Frj—1) < hij < f(Fr5)-

Fig. 7 plots three empirical relationships between the thick-
ness of young sea ice and the cumulative number of freezing-
degree days (after [9]). We used Lebedev’s (1938) parameter-
ization, with

Hyj = 1.33F( 7%

This relationship is based on 24 station-years of observations
from various locations in the Soviet Arctic. Lebedev’s pa-
rameterization describes ice growth under “average” snow
conditions, in contrast to Anderson’s which describes ice
growth with little or no snow cover. The thickness of the snow
cover is an important parameter which controls ice growth,

but there are no routine measurements available. Therefore,
if we use an ice growth model with snow conditions as a
parameter, we are dependent on a “climatological” description
of the snow cover.

The upper and lower bounds of ice thickness for each age
class are shown in Figs. 2(c) and 3(c). The high rate of ice
growth when the ice is young gives the largest uncertainty
in the thickness in this youngest age class. This uncertainty
improves as the ice ages and the growth rate decreases. The
area occupied by sea ice within a thickness range can be
read directly from the Figs. 2(c) and 3(c). This completes
the demonstration of our simple procedure for converting ice
age into ice thickness. We have used a simple ice growth
model to illustrate the process. Certainly, a more sophisticated
thermodynamic model could be implemented to obtain the
ice thickness, but the routine observations of some of the
necessary atmospheric and oceanic parameters (e.g., snow
depth, snow surface temperature, etc.) are not readily available.

V. CONCLUDING REMARKS

We have described the procedure for monitoring the local
age distribution of sea ice for a large region. We have
demonstrated the procedure using Lagrangian observations of
ice motion obtained from a time sequence of ERS-1 SAR
imagery. The advantage of this procedure is that it does not
need to distinguish between the backscatter characteristics of
thin and first-year ice types. The signature of multiyear ice
has been shown to be strikingly stable over two winters [10].
The error in the estimation of the MY fraction, caused by frost
flowers, wind-blown open water or pancake ice can be resolved
with a time sequence of images. The MY ice fraction is an
independent estimate and does not affect the age distribution
of other age classes. Using an empirical relationship between
ice growth and cumulative freezing-degree days or more
sophisticated thermodynamic growth models, one can convert
ice age to ice thickness.

In the general scheme, we suggest starting the process
during fall freeze-up and continuing for the whole seasonal
cycle through the onset of melt to obtain a record of the age
distribution for the Arctic ocean. We have discussed some
questions that need to be addressed before such a scheme could
be mechanized for extended spatial and temporal observations.
We have not addressed how such a scheme could be utilized
for summer observations. The spatial and temporal coverage
of the data required to sustain such a process are demanding.
A sampling interval of six days would cause an uncertainty
in ice age of six days and an uncertainty in the thickness of
the thinnest ice of about 15 cm (if the air temperature were
—30°C). The RADARSAT SAR, which will be launched in
Jan. 1995, will have the capability to image the ice cover
every six days. This scheme could be implemented in a new
Geophysical Processor System to provide Arctic-wide fields
of motion and age distributions.
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