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\k-S Correlation and Dynamic Time Warping: Two 

Methods for Tracking Ice Floes 
in SAR Images 

Ross McConnell, Ronald Kwok, Mernher, IEEE, John C .  Curlander, W.  Kober, and Shirley S .  Pang 

Abstract-In recent years, there has been an interest in au- 
tomating the process of producing maps of the motion of ice 
floes from SAR images acquired a few days apart. A common 
approach is to correlate raw pixel values in order to find cor- 
responding features in two images. The problem with this ap- 
proach is that the search space is often prohibitive when ice 
floes rotate, as they frequently do. We present two algorithms 
for performing shape matching on ice floe boundaries in SAR 
images. These algorithms quickly produce a set of ice motion 
and rotation vectors that can be used to guide a pixel value 
correlator. The algorithms match a shape descriptor known as 
the $-s curve. The first algorithm uses normalized correlation 
to match the $-s curves, while the second uses dynamic pro- 
gramming to compute a n  elastic match that better accommo- 
dates ice floe deformation. 

I .  INTRODUCTION 

HE motion of ice floes plays a large role in the world's T weather, because this motion exposes large expanses 

of unfrozen ocean water to the much more frigid Arctic 
air, and is therefore responsible for significant heat trans- 
fer between the ocean and the atmosphere. In addition, 
the movement of ice floes is of interest to ocean naviga- 
tion and oil drilling. SAR imagery is suited for this task 
because it allows continuous coverage through clouds that 
prevail in the Arctic, as well as during the dark winter 
months. Figs. 1 and 2 are SAR ice image pairs that show 
substantial ice movement. 

Because producing ice motion maps by hand from SAR 
image pairs is time consuming, and because the demand 
for ice motion data will be great, there has been an inter- 
est in developing algorithms for automating this process 

One way to address this problem is by correlating a 
patch of pixels from one image with the other image. Each 

position and rotation of the patch on the image defines a 
pairing of pixel values in the patch with a set of pixel 

values in a window of the image. The position and rota- 
tion of the patch that maximizes the correlation coefficient 
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(b)  

Fig. I .  Seasat SAR iiiiagcs o f  ice Hoes. Beaufort Sea. revs. 1439 and 1482. 

is assumed to contain the same feature that is imaged in 
the patch. 

This method is known as area correlation. This method 
is often computationally expensive. Computation of the 

correlation coefficient at each position takes time propor- 
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(b) 

Fig. 2 .  Seasat SAR images. Beaufort Sea, revs 1409 and 1452 

tional to the area of the patch, and this must be computed 
at a number of locations proportional to the area of the 
region searched for a match. When features may rotate. 
as in the case of ice floe matching, the computation is 
multiplied again by the number of rotations tried at each 
potential match location. The amount of computation may 
be reduced by using a “resolution pyramid.” whereby 
low resolution matches to find the approximate location 
and rotation of a match, and then the match is refined at 
higher resolutions. This approach still requires extensive 
computation when matches are ambiguous at a low reso- 
lution and for small patch sizes. 

In addition, the ice pack frequently deforms. Area cor- 
relation is not robust to deformation of objects, since, if 

the object deforms, there is no effect of the patch that 
results in a correct pairing of a majority of the patch’s 

pixels, and a correlation peak may fail to appear. In ice 

imagery, this effect is often more pronounced at low res- 

olution, hampering the effectiveness of a resolution pyr- 
amid. 

What is needed for ice matching is computationally ef- 
ficient matching methods that handle rotation and that are 

robust to deformation. These may then be used to produce 
a coarse ice motion and rotation map for a pair of images, 
which can be used to restrict the search space for area 
correlation. 

We describe in this paper two approaches based on fea- 
ture matching, one that handles rotation, and another that 
is robust to deformation. Use of these two methods in 

concert can produce the desired motion map with little 
computational expense. Both of the methods match ex- 
tracted features by shape, using a shape descriptor known 
as the $-s curve 171. 

Section I1 presents the $-s curve mathematically. Sec- 

tion I11 presents an appoximation of the $-s curve of a 
feature that is computable from the feature’s digital rep- 
resentation and is appropriate for use in  the matching al- 
gorithms. Section IV presents the first matching ap- 

proach, $-s correlation, while Section V presents the 
second approach, dynamic programming. Section VI ad- 
dresses the problem of automatically discarding the in- 
correct matches that are invariably produced by these 
matching algorithms. Section VI1 presents some empirical 
data on the performance of the algorithms on Seasat SAR 
images. 

11. THE $-J CURVE 

This section describes the $-s curve, the shape descrip- 

tor used by the algorithms described in this paper for 
matching ice floe boundaries. 

Let ?(s) = (x(s), y (s ) ) :  0 5 s I S be a continuous 
parametric curve that is parametrized by arc length. Fur- 

ther assume that x’(s) is differentiable except at isolated 
points. 

Let the derivative x’ ’ (s) = (x’ (s), y’  (s)), where 

&(s) /ds, where x is differentiable. 

(x(s + E )  - x ( s ) ) / E ,  ( 1 )  

where x isn’t differentiable. 

[dy(s)/ds,  where y is differentiable, 

\ where y isn’t differentiable. 

Let O,(s) be defined as follows over the interval 0 I s I 
S :  

\T if y ’ ( s )  = 0 and x’(s) < 0. 
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k i -1 ,  if -a  5 lim 6,:(uT(i)) 
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Fig. 3 .  Concept of a $-s curve. The direction of the tangent to a shape is 

plotted as a function of arc length around the curve. 

111. EXTRACTING SHAPES FROM SAR ICE IMAGES A N D  

DERIVING THEIR $-s CURVES 

SAR images of ice floes may be segmented into regions 
with high backscatter (usually multiyear ice) and regions 
with low backscatter (usually new ice or open water). In 
general smoothing the image produces an image with a 
bimodal histogram, which can easily be used to determine 
a threshold that divides the pixels into a bright group and 
a dark group. Binarizing the smoothed SAR images with 

this threshold produces an image where multiyear ice 
shows up predominantly as one value, and new ice and 
open water show up predominantly as another value. 

We have successfully used the Isodata clustering algo- 
rithm to cluster the pixel gray values and establish a 
threshold [6]. The images used are 1024 X 1024 pixel 
SEASAT images with 100-m pixel spacing, where each 
pixel is generated by averaging 64 pixels to produce an 

image that approximates one that has sixty-four-look pix- 
els. Each of the 100-m pixels is classified according to 
the mean value of 100-m pixels in the surrounding 3 X 3 
neighborhood. The histogram of these 3 X 3 neighbor- 
hood averages usually shows a pronounced bimodal dis- 
tribution that is suitable for clustering. 

If pixels are considered to be square, and a feature is 
considered as a group of pixels, then the boundary of a 
segmented feature consists exclusively of vertically and 
horizontally oriented pixel boundary segments, or crack 

edges, that together make up a closed polygon. This pre- 
cisely defines the boundary, and thus, arc length along the 

boundary. 
Misclassified pixels usually appear after thresholding 

as scattered salt-and-pepper noise, and can be corrected 
with standard binary image cleaning techniques, such as 

inverting the classification of regions that have a circum- 
ference (perimenter arc length) that is smaller than a 
threshold. The result of thresholding one of the images of 
Fig. 1, vectorizing the region boundaries, and discarding 
all regions whose circumference is smaller than a thresh- 
old of 100 pixels, is shown in Fig. 4.  

While these boundaries approximate the shapes of the 
features, the $ values along these boundaries may assume 
only four values, hence, the $-s curves suffer from strong 
aliasing. In addition, the arc length of these boundaries is 

affected by the orientation of a feature’s boundary relative 
to the direction of tesselation, which introduces distortion 
of the s (arc length) parameter of the $-s curve. 

The interaction of a feature boundary with its raster 
segmentation produces “jags. ” Connecting the midpoints 
of the jags with straight lines, as illustrated in Fig. 5, 

produces a polygon that is a more plausible approximation 
of the true feature boundary. Arc-length is again well de- 
fined on this polygon, and less sensitive to the orientation 
of the tesselation of the raster image. 

A close digital approximation of the feature’s 6 curve 
can be obtained by sampling the orientation of the poly- 
gon’s boundary at equal intervals of arc length around the 
polygon. The digital $-s curve is then obtained from the 
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Fig. 4. Ice floe boundaries extracted from one of the images in Fig. I .  A 
gray-value threshold for distinguishing dark from bright regions is deter- 
mined using the Isodata clustering algorithm. The image is threshold. bi- 

nary region boundaries are vectorizcd. and all boundaries whose circum- 
ference is less than 100 pixels are discarded. 

8-s curve in the straightforward way, that is, by adding 
multiples of 27r to remove the modulo 2 j ~  wrap- 
around. 

Henceforth, this approximation to the imaged feature’s 
$-s curve will be referred to as the discretized $-s curve. 

The notation $,-(i) denotes the ith element of a discretized 
$-s curve of polygon 2 .  

IV.  THE $-s CORRELATION APPROACH 

Let x’, (s) and .??(r) be the boundaries of a segmentable 
feature in two images, where the feature is free to trans- 

late and rotate in a plane parallel to the image plane. 
To determine the translation and rotation, one may be- 

gin by deriving a discretized $-s curve, $;,, for a small 
segment of a boundary from one image, and the discre- 
tized $-s curve, $,-?, for a whole boundary from the other 
image. 

To find correspondences between the two curves, we 
correlate $<, with each segment of length I in $i?, using 
the following formula for normalized correlation: 

I 

N c + i )  - 
I =  I 

(C) 

Fig. 5. Technique for deriving a boundary amenable to $-.s matching from 
a segmented region in a raster image. When the pixels are modeled as 
squares, the boundary of the segmented group of pixels consists exclu- 
sively of vertical and horizontal segments. In (A) .  a small portion of such 
a boundary is shown. A polygon is interpolated between the midpoints o f  

the “jags” of the boundary. where it changes direction for one pixel and 
then resumes its course (B) .  This polygon (C) is a smoother representation 
of the boundary that has fewer artifacts of the raster representation of the 

region. 

than by the much larger set of pixels in a two-dimensional 
patch, and thus, computation of the correlation coefficient 
at each position is less expensive. In addition, the method 
is unaffected by rotation of features; rotation of a feature 
adds a constant to its $-s curve, which does not affect the 
correlation measure. While area correlation must be com- 
puted for a number of rotations at each potential match 
location, $-s correlation does not. 

The value of k that maximizes this expression gives the 
index of the beginning of the best-match segment in $;,. 

Part of the computational advantage of this approach 
comes from the fact that the correlation is a linear one 
rather than a two-dimensional one. A match is evaluated 
at each point along a boundary, rather than at each point 
in a region. The small segment of a boundary that is 

matched is described by a small number of $ values rather 

V.  THE DYNAMIC PROGRAMMING APPROACH 

$-s correlation is a good model for matching in many 
cases. However, if one of the shapes is not identical to 
the other, the arc length is likely to be stretched or shrunk 
for portions of the boundary, and this corresponds to dis- 
tortion in the s axis of the $-s (Fig. 6). This frequently 
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Fig .  6.  Perturbation in the shape of a feature frequently leads to distur- 
bance o f  the shape of the $-s curve in both the $ and s directions. Corre- 

lation is robust to disturbance in the $ direction, but not to disturbance in 
the s direction. 

happens with $-s curves obtained from ice images. One 
cause is variability in the behavior of the algorithm for 
thresholding the image. Small changes in the length of a 
boundary also occur when small bits of floating ice adhere 
to the edge of an ice floe. 

We solve this problem recursively, using dynamic pro- 
gramming. A simple recursive solution to many problems 
leads to recomputation of intermediate results in solving 
separate subproblems. Dynamic programming is the use 
of a table for storing these intermediate results so that they 
do not have to be recomputed. This device is frequently 
used to solve elastic matching problems, such as those 
arising in stereopsis 181, sequence comparison 191, and 
speech processing [ 101. Its use in shape matching has been 
primarily restricted to handwriting analysis [ 1 11. The sub- 
ject is discussed in detail in a 1983 book on sequence 
comparison [ 121. 

To illustrate how this approach works, we begin with 
the simple case where the end points of two segments of 

$-s curves to be matched are known, and where the de- 
gree of match between them must be computed. In other 
words, in this example, we are not searching for a seg- 
ment that best matches another; the segments are already 
given, and all we want to do is to find the elastic mapping 
between them. 

Each of the $-s curves is represented by a sequence of 
values. A “mapping” between the two curves pairs up 
values from the curves. Multiple elements from one se- 
quence may be matched with a single element from the 
other sequence and vice versa, with the restriction that the 
mapping lines do not cross, as in the example in Fig. 7. 

More formally, suppose sequence x has M elements, 
and sequence y has N elements, and a mapping between 
the two sequences contains P pairings, where P L max 
(M, N ). Let the notation xi  stand for the ith element of x. 

I EXAMPLE: 

2 3 4 1 0 1 0  7 10 3 

Fig .  7 .  Mapping between two sequences o f  numbers that minimizes the 
sum of differences of paired values. Finding this mapping for $-s curves 
can be used to match 4 - s  curves that are perturbed in the s direction. 

Each pairing has an index, k :  1 I k I P .  The mapping 
is specified with two integer functions i and j ,  where xi(k) 
and yj(k) give the elements paired by the kth pairing. Each 
of the integer functions increase by either 0 or 1 at each 
k ,  and at least one of them increases by 1 at each k .  

Many mappings are possible between any two se- 
quences, and one must have a “cost measure” for eval- 
uating different mappings. A number of measures are pos- 
sible, but for the purposes of this example, we will use 
the sum of absolute differences between paired values as 
the measure of the quality of the mapping. A smaller cost 

implies a better mapping. The distance between the two 
sequences is the minimum of the costs of all possible 

mappings between the two sequences. 
The measure of the cost of a mapping is thus 

c(i9 j )  = I ~ i ( k )  - yj(k) I . (7) 

The distance between the two sequences is 

Dx,y = min (c(i ,  j ) )  (8) 

over all possible pairs of mapping functions ( i ( k ) ,  j ( k ) ) .  

This distance can be computed recursively using the 
following rule. Let a prejix of a sequence denote the sub- 
sequence found in an interval that starts at the beginning 
of the sequence. Let d,x.v(m,  n )  denote the distance be- 
tween the prefix of x of length m and the prefix of y of 
length n .  

The solution of d,v. ! ( M ,  N ) is 4,. I” An inductive proof of 
correctness of this algorithm is straightforward, and is a 

variant of that given in [ 1 11. 
To solve this problem efficiently, one may construct a 

two-dimensional dynamic programming table, each of 
whose entries contains the cost of matching a single pair 
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yi., ~ d ( l , j - l ) ~ d ( 2 , j - l )  I ~ d ( i - l , j - l ) ~ d ( i , j - l ) ~  

Fig. 8. Use of dynamic programming table for computing ( 1  I )  efficiently. 
The value of d?,  ~ ( i .  J )  is tilled into position ( I .  j )  of the table. The values 
o fd , , , ( i  - I , ; ) ,  d > , $ ( i  - 1.1 - I ) ,  and d,, ( i  - I ,  j ) .  which are needed 
to evaluate ( I  I )  are contained in three neighboring elements. If the table 
is tilled in row-by-row. the neighboring elements are tilled in first, and the 
whole table can be tilled in  in constant time per entry. 

of prefixes of the sequences. The table has size ( M  x N ) 

(Fig. 8).  The distance between the prefix of x of length i 
and the prefix of y of length j goes in position (i, j )  of the 

table. Note that the recursive cases needed to compute an 
entry correspond to the entries in  the immediate left, up- 

per-left, and upper neighbors of the entry. The table can 
be filled in row by row so that the left, upper-left, and 
upper neighbors of an entry are already complete when it 

is time to process the entry. The number of steps required 
to fill in each entry is constant for any size of table, and 
therefore the running time is proportional to the product 
of the lengths of the sequences to be compared. 

When the process is completed, the lower-right entry 
contains d., ,!(M, N )  = Dx.!. The mapping can be recon- 
structed by backtracking through the elements of the array 
giving rise to the solution. This may be accomplished by 
starting at the lower right entry, and at each entry pro- 
ceeding to the upper, left, or upper-left neighbor that con- 
tains the minimum entry. For each entry ( i ,  j )  traversed 
by the path, the mapping has a pairing between element i 
of the first sequence and elementj of the second sequence. 
Fig. 9 shows this process for the example sequences in 
Fig. 7. The highlighted backtracking path through the ar- 
ray yields the mapping depicted in Fig. 7. Fig. I O  shows 
an actual dynamic programming match for two $-s curves 
derived from the boundaries of ice floes in segmented SAR 

images. 
For tracking ice floes, however, the object is to locate 

the feature in one image that best matches a given feature 

in the other image. This can be accomplished by selecting 
a subinterval of the $-s curve of a floe boundary from one 
image, and finding the subinterval of the $-s curves of 
the other image most similar to it .  This allows a match 
even if only short portions of an ice floe boundary match. 

The subinterval of one sequence that is most similar to 
another sequence can be found by generalizing an algo- 
rithm developed for finding best-match subintervals of al- 
phabetic sequences that was developed by Erickson and 
Sellers [9]. The sequence to be searched for the subinter- 
val is put along the top of the dynamic programming ta- 

ble, and the sequence to be matched is put along the left. 

2 

3 

4 

10 

10 

7 

10 

3 

1 3  9 6 6 9 1 0 3  2 

13 17 24 32 33 33 

10 13 19 26 26 27 

8 10 15 21 22 24 

7 11 11 11 18 26 

30 20 6 

39 27 7 

41 27 13 10 12 13 1 4 L 8  

Fig. 9. Dynamic programming match of the two sequences of Fig. 7 .  The 
measure of similarity is recorded in the lower right-hand corner. The map- 

ping between the sequences is recovered by following the course of the 
recursion giving rise to the minimum from the lower right-hand corner to 

the upper left-hand corner. Each position ( i . j )  traversed represents a pair- 
ing between element i of the upper sequence and element J in the left-hand 

sequence, and gives rise to the mapping shown in Fig. 7 .  

Fig. IO.  Dynamic programming match for two $-s curves derived from 
the boundaries of the same ice floe appearing in two SAR images. In prac- 
tice, shorter segments are matched. 

Each entry (i, 1)  in the top row of the table is filled in 
with ( x i  - y ,  1 .  This fills in the entries (i, 1)  in the top 
row with the distance between the first element of y and 
any subinterval of x ending at position i in x. 

Filling in the rest of the table using the inductive rule 
given in ( 1  1) causes each entry (i, j )  to contain the dis- 

tance between the firstj elements of y and any subinterval 
of x ending at position i .  

Once the table is filled in,  the bottom row of the array 
contains the distance between all of y and any subinterval 
of x ending at position i in x. The minimum value in this 
row gives the distance between y and any subinterval of 
x. The column where this minimum occurs gives the lo- 
cation where the subinterval ends in x.  Starting at this 
entry and tracing back through the minimum upper, up- 
per-left, or left entries leads to the top row at the column 
that gives the position of the beginning of the match in x.  
An example is shown for two sequences in Fig. 11. 

One problem with the distance measure given by ( 1  1)  
is that when it is applied to $-s curves, it does not pen- 
alize mappings consisting of severe warpings, which are 
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1 1 3 1 6 1 3 3 2 5 3 7  

0 0 2 0 5 0 2 2 1 4 2 6  

2 2 0 2 3 2 0-0 
z 

z 1  
Oz3 3 3 1 1 5 3 1 1  

6 6 2 4 3 6 2 2 2 1 1 1 2 5  

Fig. I I .  Using dynamic programming to find the subinterval of one se- 

quence that best matches another sequence. The procedure is carried out 
in the same way as in Fig. 9. except that the top row of the table is filled 
in in a way that does not penalize a match for starting i n  the middle o f  the 
upper sequence. The column where the minimum occurs in thc lower rou 
indicates the location of the end of the best match in the top sequence. 
Following the recursion giving rise to the minimum from that location to 
the upper row finds the location of the beginning of the match i n  the top 

sequence. 

unlikely to represent a correct match in the context of $- 
s curves. To remedy this situation, we use the following 
recurrence relation, which favors matches that do not in- 
volve too much warping: 

where r > 1 is a factor that penalizes matches with ex- 
cessive warping. 

Although dynamic programming excels over $-s cor- 

relation in the presence of deformation, the distance mea- 
sure is sensitive to rotation, which adds a constant to one 
of the $-s curves; it will not work as well as $-s corre- 
lation in this case. It shares some of $-s correlation’s 
computational advantages over area correlation. Both $- 
s correlation and the dynamic programming match a small 
segment only at each point along a boundary, rather than 
at each point in an area. The cost of both methods is pro- 
portional to the length of the small segment times the 
length of the boundary. 

VI. ELIMINATING FALSE MATCHES 

Usually, some of the matches produced by $-s corre- 
lation and dynamic programming are incorrect. Correct 

matches can be efficiently identified by noting that there 
is usually more than one correct match on each ice floe. 
Two or more matches on the same rigid body will exhibit 
rigid body motion. On the other hand, an incorrect match 
is unlikely to exhibit rigid motion with another match. 

The following principles, illustrated in Fig. 12, are used 
as criteria for identifying rigid body motion between two 
matches. 

1. The axis joining the features in one image must have 
the same length as the axis joining the features in 
the other image. 

2.  The relative rotation of these axes must be the same 
as the relative rotations of the features identified in 
each of the matches. 

An estimate of the relative rotations of the features 
identified in each of the matches can be obtained from the 

Fig. 12. Method of estahlishing selecting correct matches. All pairs of 

matches are examined to sec i f  they exhibit rigid body motion. Features A 

and A ’  represent one of the matches. while features B and B’, reprcscnt 
the other. The matches do not exhibit rigid body motion i t  the distance A B  
does not agree with the distance A ’ B ’ .  or  if the rotation of A ‘ B ’  with 
respect to AB does not agree with the rotation of A ’  with respect to A and 
with that of B’ with respect to  B. Any matches that do not show rigid body 
motion with at least one neighboring match are discarded. 

Fig. 13. Correct motion vectors derived by selecting a set of features from 

one of the images in Fig. I and finding their matches in Fig. 2 using $-.T 

correlation. Incorrect matches were discarded by hand. 

mean difference between matched $ values. In practice, 
the lengths of the axes and the rotations never coincide 

exactly, so these are deemed to coincide if they match to 
within tolerances given as parameters to the algorithm. 

VII. EXPERIMENTAL RESULTS 

We compared $-s correlation and dynamic program- 
ming on the image pair of Fig. 1 .  Each of the extracted 
boundaries was divided up into segments 75 pixel units 
long. Remaining fractions of segments were discarded. 
The $-s curve for each of the segments was then corre- 
lated against all of the $-s curves for the other image. 
The matches were verified by hand, and the incorrect 
matches were thrown out, leaving the set of motion vec- 
tors shown in Fig. 13. 

Fig. 14 depicts the results of the same test with dy- 
namic programming substituted for $-s correlation. A 
value of 4.0 was used for the parameter r in ( 1  1 ) .  The 

number of correct matches is 117, as opposed to 78 for 
$-.Y correlation. 
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Fig. 14. Results of performing dynamic programming o n  the same set of 

features from Fig. 1 and discarding incorrect matches by hand. 

Fig. IS. Results of using the algorithm for automatically discarding in- 
correct matches on the $-.\ correlation matches in Fig. 13. 

TABLE 1 
COMPARISON OF I - S  CORRELAliON A N D  DYNAMIC PROCRAMMIKC 

Image pair from Figure 1 

Match Segment 
Method Length # Attempted # Successful 

Fig. 16. Image pair used in test whose results arc given in Table I 

Correlation 20 567 
D.P. 20 567 

Correlation 75 278 
D.P.  15 278 

Correlation 1 so I l l  
D.P. 150 I l l  

36 
88 

78 
I I7 

28 

49 

Image pair from Figure 16 

Match Segment 
Method Length # Attempted # Successful 

Correlation 20 3 64 
D.P.  20 364 

Correlation 15  35 I 
D.P. 15 35 I 

Correlation 1 so 141 

D.P. 150 141 

12 
34 

45 
74 

20 
25 

"Segment Length" refers to the length of the $-s segments being 
matched. in pixel units. 

In Fig. 15, the manual elimination of bad matches is 
replaced with the automated bad match filter. The total 
number of matches is 278. The automated bad match filter 
correctly identifies 55 of the 74 correct matches, and 
falsely identifies two incorrect matches as being correct. 

Table I gives the results of further tests of the $-s cor- 
relation and dynamic programming algorithms on the im- 
ages from Figs. 1 and 16. In all these cases, in which 
features did not rotate more than a few degrees, the dy- 

namic programming produced a greater number of correct 
matches. 

VIII. CONCLUSIONS 

Matching of ice floes is complicated by rotation of fea- 
tures and by deformation of the ice. Because of this, the 

search space for area correlation matching can become 
prohibitively large. If, however, an approximation of 

these can be found in advance of performing area corre- 
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lation, the search space can be reduced to manageable 
size. Both of the ice floe matching methods presented in 
this paper are computationally simpler than is area cor- 
relation, and more robust under circumstances commonly 
arising in ice floe image pairs. The $-s correlation ap- 
proach works well in situations where ice floes rotate 
greatly. The dynamic programming approach appears to 
have superior performance to the $-s correlation ap- 
proach when deformation of the ice floes is a problem, as 
long as the floes do not rotate too much. This might be 
remedied by using $-s correlation to get rotation estimate 
that can be added to one of the $-s curves before dynamic 
programming has been performed. 

The output of the procedures is a set of motion and 
rotation vectors. This can be used directly as an ice floe 
motion map, or it can be used to reduce the search space 

for an area correlation approach if motion vectors on a 
regular grid are desired. 
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