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Abstract. Synthetic aperture radar (SAR) imagery received at the Alaska SAR Facility 
is routinely and automatically classified on the Geophysical Processor System (GPS) to 
create ice type maps. We evaluated the wintertime performance of the GPS 
classification algorithm by comparing ice type percentages from supervised 
classification with percentages from the algorithm. The RMS difference for multiyear 
ice is about 6%, while the inconsistency in supervised classification is about 3%. The 
algorithm separates first-year from multiyear ice well, although it sometimes fails to 
correctly classify new ice and open water owing to the wide distribution of backscatter 
for these classes. Our results imply a high degree of accuracy and consistency in the 
growing archive of multiyear and first-year ice distribution maps. These results have 
implications for heat and mass balance studies which are furthered by the ability to 
accurately characterize ice type distributions over a large part of the Arctic. 

1. Introduction 

On July 17, 1991, the European Space Agency's ERS 1 
satellite was launched into a near-polar, sun-synchronous 
orbit from French Guiana. ERS 1 carries the first synthetic 
aperture radar (SAR) in space since the Seasat mission in 
1978. ERS 1 data from receiving and processing stations 
around the world are being used for geophysical and opera- 
tional applications as diverse as soil moisture monitoring and 
ocean wave spectra determination [European Space 
Agency, 1993]. Of particular interest to the polar research 
community are data from the Alaska SAR Facility (ASF) in 
Fairbanks. Both airborne and Seasat SAR data had amply 
demonstrated, prior to the launch of ERS 1, the utility of 
SAR for detailed and accurate information on ice motion and 

type. This information has been used in process studies (see, 
for example, Fily and Rothrock [1990]) and for practical 
applications, such as routing ships through ice-infested wa- 
ters. The surety of useful polar geophysical information from 
SAR led to the establishment at the University of Alaska of 
a facility for processing and distributing SAR data [Carsey et 
al., 1987]. From the outset it was decided that ASF should 
provide scientists with not only image data but also with 
geophysical products. These products, which are created on 
the Geophysical Processor System (GPS), are ice motion 
vectors, images of ice type (ice type maps), gridded ice type 
concentrations, and wave spectra. Key considerations in 
this decision were the efficacy of a central processing and 
distribution point for products, the maturity of the algo- 
rithms which would produce them, and the role these 
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products can potentially play in meeting the science objec- 
tives held by users of ASF data [Alaska SAR Facility 
Prelaunch Science Working Team, 1989]. Broadly, these 
objectives are to observe ice circulation, to verify and 
improve dynamic models of ice properties, to estimate fluxes 
of heat, mass, and momentum, to improve formulations of 
the constitutive laws of ice rheology, and to observe and 
explain changes in ice morphology [Carsey, 1989]. Observ- 
ing the distribution of ice type in the Arctic supports and, in 
some cases, is crucial to the accomplishment of these 
objectives. For instance, validating the formulation of con- 
stitutive laws with observations requires that estimates of ice 
type be accurate and consistent to within a few percent. Ice 
type must often serve as a proxy for ice thickness, since 
thickness data are sparse. Ice type is therefore an important 
variable in flux calculations. Furthermore, if understanding 
the role of the Arctic in global climate change is a goal, then 
monitoring changes in the distribution of ice types and open 
water is essential owing to the feedback mechanism between 
ice extent and heat transfer [Rothrock and Thomas, 1990; 
Gloerson and Campbell, 1991]. 

The ice type algorithm in place on the GPS is a backscat- 
ter-based Bayesian maximum likelihood algorithm meant to 
run indiscriminately on SAR scenes within its spatial and 
temporal domain. Such a classifier is useful largely because 
it can generate ice type statistics in quantities much greater 
than could be produced by manual inspection or supervised 
classification of images. At present, over 5700 SAR images 
have been classified on the GPS and reside in the ASF 

product archive. If it is accurate, the algorithm substantially 
improves our ability to characterize ice type distributions 
over a large section of the Arctic. To assess the performance 
of the algorithm, we have compared ice type percentages 
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Figure 1. Approximately every other 100-km2 image along each swath shown was selected for analysis. 
The location of the LeadEx experiment, which took place in March and April 1992, is indicated. 

from the algorithm with ice type percentages from super- 
vised classification on an image by image basis. We begin by 
describing the SAR data set used in the comparison. This is 
followed by a section describing the algorithm (and two 
variations which were also evaluated), as well as the ex- 
pected backscatter distributions of ice types in ERS 1 
imagery. The methodology of supervised classification and 
its limitations as a means of assessing accuracy are also 
discussed. In section 5 the results of the analysis are 
presented as statistics describing the accuracy of the classi- 
fier in terms of deviation from supervised classification. The 
algorithm assumes relatively stable and separable backscat- 
ter distributions for ice type classes. Errors caused by 
distribution variability and overlap are discussed in section 
6. The concluding section remarks on the uncertain confor- 
mity between ice type labels and physical ice types or ice 
thickness, emphasizes what we believe to be the excellent 
separation of multiyear (MY) and first-year (FY) ice by the 
algorithm, and suggests areas for future work which may 
lead to algorithm improvement. 

2. SAR Data Description 
2.1. ERS I Image Data Characteristics 

All image data used in this study are ERS 1 data collected 
within the ASF station mask and processed at ASF. The 
GPS uses calibrated, low-resolution images, which have a 
pixel spacing of 100 m and a nominal resolution of 240 m. 
Because low-resolution images are created by averaging full 
(30 m) resolution images, speckle in low-resolution images is 
insignificant. The calibrated images are a measure of the 
backscatter cross section of the imaged surface. Normalized 
backscatter cross section or cr ø is the ratio of the radiance of 
radar energy reflected back toward the source to that inci- 
dent on the surface per unit area. Backscatter depends on 
properties of the imaged surface, such as roughness and 
dielectric constant. ("Surface" here means the imaged ma- 

terial. Backscatter can be due to surface scattering, volume 
scattering, or both.) Because surface roughness and dielec- 
tric properties vary with ice type, calibrated images can be 
classified on the basis of backscatter. 

ASF imagery has an expected absolute and relative cali- 
bration accuracy of 2 dB and 1 dB, respectively [Fatland and 
Freeman, 1992]. Absolute calibration quantifies the uncer- 
tainty of atr ø measurement relative to the actual tr ø of a 
surface. Typically, this appears as a bias when an identical 
surface area from two image frames (imaged at different 
times) are compared. Relative calibration measures how the 
backscatter of a surface known to have uniform backscatter 

appears to vary within an image. Relative calibration is 
usually better than absolute calibration and is easily main- 
tainable, especially if the radar sensor is stable. The design 
of the classifier is such that it can accommodate errors in 

absolute calibration more readily than errors in relative 
calibration. The calibration accuracy and the noise equiva- 
lent tr ø provide the sensor's limits to the discrimination of 
surface types by backscatter. The noise equivalent tr ø of the 
ERS 1 radar data is at approximately -24 dB, which means 
that the backscatter from a surface with atr ø of -24 dB is 
equivalent to the noise power of the sensor. Surfaces with a 
backscatter cross section of less than -24 dB therefore, such 
as grease ice and perhaps some forms of new and young ice, 
have backscatter cross sections low enough to be below the 
noise floor of the sensor and are not easily detected. The 
backscatter of FY and MY ice is well within the dynamic 
range of the sensor. 

2.2. The Image Data Set 

The data set of 68 images selected for this study spans a 
period of approximately 3 weeks from March 28 to April 20, 
1992. Geographically, the images sample the area between 
the Canadian Archipelago and the East Siberian Sea from 
68øN to 84øN (Figure 1). Here we focus on the performance 
of the classifier under winter conditions, when the air 
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Table 1. ERS 1 Synthetic Aperture Radar Image Sea Ice 
Lookup Table for Winter 

Ice Type 

Mean Standard 

Backscatter, Deviation, 
dB dB 

MY -10.0 1.01 
FYR - 14.0 1.06 
FYS - 17.0 1.26 
NI/OW -21.8 1.66 

MY is multiyear; FYR, first-year rough; FYS, first-year smooth; 
and NI/OW, new ice or open water. See text for further ice type 
descriptions. 

temperatures near the surface are below -10øC and where 
there is typically a dry snow cover over the sea ice with an 
absence of free water to modulate the backscatter signa- 
tures. The air temperature at the center location of each of 
the images was extracted from 1000-mbar National Meteo- 
rological Center analyzed fields. The temperature averaged 
about -20øC for all images. Under these relatively static 
conditions (in terms of sea ice backscatter) we can better 
examine the winter performance of the classifier. 

3. The Classification Algorithm 
The development of the algorithm in place at ASF has 

been reported by Kwok et al. [1992] and by Cunningham et 
al. [ 1992]. The following briefly describes the ASF algorithm 
and two additional versions. 

3.1. Winter Lookup Table Description 

The classification algorithm uses lookup tables containing 
parametric descriptions of the backscatter statistics of dif- 
ferent sea ice types. There is a lookup table (LUT) for each 
season, since backscatter is affected by seasonal environ- 
mental conditions. The winter lookup table (Table 1) is used 
when temperatures are below -10øC. In the Beaufort Sea 
this is generally from October to mid-April. The winter LUT 
has entries for the four following ice types: MY ice, two 
types of FY ice, and an ice type with relatively low back- 
scatter close to the system noise limit. One type of FY ice is 
considered to be rougher and more deformed. This type, 
termed first-year rough (FYR), has relatively high backscat- 
ter. A second FY type, termed first-year smooth (FYS), has 
lower backscatter, which may be due to a smoother surface. 
The final ice type is probably representative of new or young 
ice with low backscatter or of open water under calm 
conditions. It is labeled new ice or open water (NI/OW). 

The names of the FY classes, which imply that the classes 
correspond to smooth and rough surfaces, may be mislead- 
ing. When speaking of radar backscatter, "rough" generally 
means that the small-scale surface height variations are large 
compared with the radar wavelength. In this limited sense, 
then, rough FY ice will have a backscatter that is different 
from smooth FY ice, with the amount of difference depend- 
ing on incidence angle. However, the 240-m resolution of the 
SAR data means that large-scale roughness features, such as 
ridges and hummocks, also contribute to pixel intensity, 
obscuring any straightforward relationship between rough- 
ness and backscatter. Even if one could assume homoge- 
neous large- and small-scale roughness over the spatial scale 
of a SAR pixel, factors besides roughness which affect the 

dielectric properties of the ice (such as salinity) can play a 
large part in determining the backscatter of FY ice. 
"Rough" and "smooth," then, can only refer to the char- 
acteristics of FY ice in an image as subjectively determined 
by the image analyst and as discussed in section 4. 

The LUT was originally constructed using scatterometer 
measurements [Kwok et al., 1992], rather than SAR mea- 
surements of backscatter. This is because it was not clear 

how to effectively assign backscatter distributions to ice 
types based on the limited amount of appropriate SAR data 
available before ERS 1. When ERS 1 imagery became 
available, the LUT backscatter statistics were refined. One 
reason for the difference between SAR and scatterometer- 

derived ice type backscatter statistics is that a SAR resolu- 
tion element covers a much larger area than that of a surface 
scatterometer measurement. Therefore SAR pixels may 
contain a mixture of subtypes which can be distinguished in 
scatterometer data but are not resolved in SAR data. The 

LUT entries were corrected using backscatter samples from 
manually identified ice types in a small set of images from the 
winter of 1991. Subsequent work (Kwok and Cunningham 
[1994] and this study) has shown the corrected LUT values 
for MY ice to be stable and representative. 

MY ice is readily separated from FY ice because the mean 
backscatter of MY ice differs from that of FY ice by several 
standard deviations. The discrimination of the various types 
of FY and younger ice is more difficult (as we shall illustrate) 
owing to the variability of their signatures, especially when 
ice is less than about a meter thick. Indeed, we do not 
attempt in this paper to associate each of these ice types with 
an expected thickness distribution. That task requires the 
compilation of extensive in situ measurements. Rather, the 
objective of this study is to evaluate the consistency of the 
backscatter of the ice types when those types are assigned 
by an operator. By doing so, we show the ability of auto- 
mated classification to match the results of much more 

labor-intensive manual classification. 

3.2. Maximum Likelihood Classification 

Maximum likelihood, optimal, or Bayesian classification 
theoretically minimizes the probability of classifying an 
image pixel erroneously if the backscatter distributions of 
the different ice type classes are known. Formally, it is 
classification according to Bayes rule, 

P(w•lx)- P(xlw fiP(wy)/P(x) 

which states that the a posterJori probability that a pixel with 
backscatter value x is a member of class wj (P(wjlx)) is equal 
to the state conditional probability density function for x or 
the likelihood of wj with respect to x (P(xlw)) times the a 
priori probability of class wj (or P(wj)), divided by a 
normalization factor. Choosing the class for which P(wlx) is 
greatest minimizes the probability of error [Duda and Hart, 
19731. 

For a one-dimensional feature vector, such as backscatter, 

evaluating P(w•lx) is conceptually simple. Figure 2 shows 
probability density functions (i.e., backscatter distributions) 
from the LUT for MY and FYR ice (solid line). There is 
overlap between the two classes, but the probability of 
choosing the wrong class is minimized by placing the deci- 
sion boundary at x where P(xlFYR) = P(xlMY). ML classi- 
fication assumes that the class distributions are normal. Note 
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Figure 2. The probability density functions for first-year 
rough (FYR) and multiyear (MY) ice (P(xlFYR, P(xlMY)) 
based on the lookup table (LUT) distributions. The dashed 
lines are density functions weighted by 70% probability of 
occurrence of MY ice, 30% probability for FYR ice. The 
horizontal axis is in units of intensity divided by a scale 
factor of 1.2 x 10 -5. 

that backscatter is in units of intensity, rather than decibels. 
Both supervised and unsupervised classification takes place 
using the intensity (rather than decibels) represented by each 
pixel value after the image has been calibrated and corrected 

for noise. Plate 1 shows a classification product for an image 
from about 72øN. MY ice appears to be readily distinguish- 
able from FY and younger types. The algorithm has classi- 
fied much of the first year ice as FYS. Some dark ice is 
classed as new ice or open water, although a sequence of 
images for this area over several weeks, as well as the bright 
linear features running through the area (these are presumed 
to be ridges), suggest that this ice is FY ice. 

3.3. Maximum a Posteriori Classification 

If a priori probabilities of occurrence are well known, then 
overall error can theoretically be reduced further. The 
dashed line in Figure 2 shows the probability density func- 
tions weighted by 70% for MY ice and 30% for FY ice. Note 
that the decision boundary shifts to the left, and more 
backscatter values are therefore classified as MY ice. If it is 

important to find most occurrences of a relatively rare class 
(such as new or FY ice in the Beaufort in winter), then it may 
not be desirable to use unequal or realistic prior probabili- 
ties, since doing so will reduce the number of cases correctly 
identified as the rare class. There is a trade-off between the 

detection of a class with a low probability of occurrence (for 
example, open water in the winter perennial ice zone) and 
the overall error for all the classes. Versions of the algorithm 
which use both equal and unequal prior probabilities were 
tested. The version which uses equal prior probabilities 
bases classification only on the probability density functions 
of the classes and is hereafter termed simply the maximum 
likelihood (ML) algorithm. The maximum a posteriori 
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Plate 1. An ERS 1 synthetic aperture radar (SAR) image from the Beaufort Sea at approximately 72øN, 
with the algorithm-produced classification map. The algorithm found 67% multiyear (MY) ice, 16% 
first-year rough (FYR) ice, 15% first-year smooth (FYS) ice, and 2% new ice or open water (NI/OW). 
Copyright ESA 1992. 
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(MAP) version, on the other hand, first classifies the image 
using ML classification. On a second pass it reclassifies the 
image using, for the MY prior probability, the concentration 
of MY ice obtained from the first pass. The prior probabili- 
ties for the other classes are divided equally. This version is 
only applied when the initial classification results in MY 
concentration of 50% or greater, since not enough is known 
regarding the stability of the backscatter distributions of 
younger ice types in ERS 1 imagery to confidently assign 
prior probabilities to them on the basis of the initial classi- 
fication. Of the 68 images used in this study, 52 had an initial 
MY ice concentration of greater than 50%. Considerations to 
using prior probabilities with maximum likelihood classifica- 
tion are given by $trahler [1980]. 

3.4. Estimating MY Backscatter 
How well the algorithm does, of course, depends on how 

well the class distributions in an image have been approxi- 
mated by the LUT. To account for shifts in overall image 
brightness caused by inaccurate calibration or other factors, 
the LUT is shifted relative to the mean backscatter of MY 

ice in the image being classified. (If no MY ice is identified, 
then the canonical LUT of Table 1 is used without modifi- 

cation.) The mean backscatter of MY ice is estimated from 
the image using an Isodata clustering routine. Isodata is an 
efficient form of maximum likelihood parameter estimation 
[Duda and Hart, 1973]. The backscatter cluster closest to 
the LUT value for MY ice is chosen as the MY cluster. Only 
a small (5%) portion of the image is clustered, which leads to 
an uncertainty in the estimate of mean MY backscatter of 
about 0.5 dB. (In addition, there is some uncertainty in the 
Isodata estimation procedure itself. MY ice is the standard 
because the backscatter of MY ice is relatively stable. 
Furthermore, the separation between MY and FY backscat- 
ter clusters is much greater than that between the other 
types, which allows a more accurate estimation of mean 
backscatter in Isodata). A 0.5-dB error in correctly identify- 
ing the mean backscatter of MY ice in an image leads to a 
5-10% error in classification [Kwok et al., 1992]. Therefore 
our benchmark for successful algorithm performance is 
absolute accuracy (accuracy independent of concentration) 
to within 10%. 

3.5. Iterative Classification 

Because uncertainty in the location of the mean backscat- 
ter for MY ice is a source of variability and error in 
classification, a third version of the algorithm obtains a more 
accurate estimate of mean MY backscatter by reclustering, 
in a second iteration, all those pixels classed as MY in the 
first iteration. This version is termed the ML iterative 

version. If results of the first pass are inaccurate, then the 
estimate of mean MY backscatter could potentially be wors- 
ened owing to the influence of misclassified pixels in the 
Isodata clustering routine. Results show that the improve- 
ment in parameter estimation due to the larger MY sample 
size more than offsets this potential error. Like MAP, this 
version is only applied when the initial classification results 
in MY concentration of 50% or greater. The ML iterative 
version has replaced the original ML version of the algo- 
rithm on the GPS at ASF. 

4. Supervised Classification 
Classifier performance was tested by comparing results 

from the three variations of the unsupervised maximum 

likelihood algorithm with the result of supervised ML clas- 
sification for each image. This method was chosen in order 
to provide a statistically large number of data points for 
comparison. To perform the standard manual classification 
of outlining individual ice types and totaling their area in 
each image would have been extremely time consuming, 
given the large number (68) of images used in the analysis 
and the large area covered by each image. As the supervised 
results are playing the important role of a substitute for 
surface observations in this analysis, it is necessary to 
thoroughly describe how they were obtained. 

For every image analyzed a human interpreter selected a 
group of training areas from the image which were consid- 
ered to be representative of the ice types present in the 
image. On average, two to four training areas were selected 
per ice type. With the exceptions noted below these ice 
types matched those of the LUT. Not all ice types were 
present in each image. The average size of the training areas 
depended somewhat on ice type. The majority of the images 
consisted of large floes of MY ice surrounded by and 
intermixed with smaller areas of first-year ice. Generally, the 
average training area sizes for MY, FYR, FYS, and NI/OW 
were 130 km 2, 20 km 2 , 35 km 2 , and 4 km 2 , respectively. The 
minimum training area size was about 2 km 2 (or about 400 
pixels). Uniformity was the key to training area selection. 
An attempt was made to select training areas from a variety 
of locations in the image. Generally, the ice type training 
areas selected easily correlated with one of the four ice type 
categories of the standard LUT. MY ice areas selected were 
free of isolated dark areas (which may be large frozen melt 
ponds or small areas of FY ice), frozen leads, or other 
features which would bias the statistics of the training area. 
The selected NI/OW training areas were completely feature- 
less. FYS training areas were dark in appearance and 
featureless except for occasional well-defined ridges. FYR 
training areas were always brighter than FYS areas, had less 
contrast between features and background, and often ap- 
peared to be without defined ridges. The interpretation of 
this difference in appearance is that FYR ice generally has 
higher ridge density than FYS ice. A greater number of 
deformed features within each 100-m pixel raises overall 
brightness. Contrast is reduced because less background ice 
is undeformed. 

Occasionally, rogue ice types or wind-roughened open 
water areas were encountered, and when the area of these 
"outliers" was large enough to be satisfactorily sampled, 
they were distinguished as separate surface types. Rough 
open water areas, found in four images, had high backscatter 
values of about -7 dB to -5 dB. Two MY ice subsets, bright 
MY ice (with a mean of -8.3 dB) and dark MY ice (with a 
mean of- 12.2 dB), could be distinguished in a few images, 
and the concentrations of these ice types were summed with 
that of "normal" MY ice to form a total supervised MY ice 
concentration. Extremely bright (-6 dB) and small MY ice 
areas were found in two images, and the area covered by 
these patches was summed with that of normal MY ice. 
(These small patches of what we assume to be MY ice persist 
over at least several weeks in the study data set and in other 
examples from the larger Beaufort/Chukchi Sea winter data 
set.) The rough open water and extremely bright MY ice 
constituted only very small areas (<1%) of the imagery. 

Once the training areas were established, lookup tables 
were formed for each image and ML classification was 
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Plate 2. Supervised classification of the image shown in Plate 1. The analysis resulted in 72% MY, 16% 
FYR, 8% FYS, and 3% NI/OW. 

performed on the calibrated images using the image-specific 
lookup tables. An example of supervised classification is 
presented in Plate 2. The supervised classification results 
were then compared to unsupervised classifications results. 
Note that while the percentage of MY ice is about the same 
for the supervised results in Plate 2 as for the algorithm 
results in Plate 1, the analyst found somewhat less of the 
FYS type. 

Both supervised and unsupervised ML classification re- 
sults in some error when overlap between classes exists. For 
instance, an analyst classifying MY and FY ice in an image 
in a completely manual fashion would include the pixels of a 
bright ridged area running through FY ice as part of the FY 
floe. Classification on the basis of backscatter, however, 
regardless of how carefully training sets are selected, would 
include the ridge pixels in the MY class. What we are 
assessing, then, is primarily the error in classification which 
comes from the mismatch between the calculated ice type 
backscatter distributions in the lookup table and the actual 
ice type backscatter distributions of the images. This error is 
minimized in supervised classification by the manual deter- 
mination of lookup tables directly from the images. In 
addition, error due to subjectivity in the supervised results 
was minimized by having a single analyst perform the 
classifications over as short a time period as possible. A 
consistency check was performed on results from supervised 
classification by reclassifying several images after an ex- 
tended period of time had passed. The supervised concen- 

trations were recalculated and compared to the previous 
estimates. The change in estimated concentration was found 
to be 2.8%, 2.5%, 1.5%, and 1.9% for MY, FYR, FYS, and 
NI/OW, respectively. This indicates a large degree of stabil- 
ity in the measurements. 

The discrepancy between what would be the results of 
completely manual analysis and supervised classification is 
probably largest for the NI/OW class. In some images, newly 
frozen leads provided the NI/OW training set. Much of the 
smooth FY ice was dark enough, however, to be included in 
this class, leading to an overestimation of the percentage of 
NI/OW by both supervised and unsupervised classification 
(see Plates 1 and 2). The classifier's performance in identi- 
fying the NI/OW class was not evaluated because there were 
not enough samples of this class in the imagery and because 
those samples that did exist had concentrations that were too 
small for a rigorous comparison to be performed (the con- 
centration in all images except one was less than 10%, which 
is within the expected error of the algorithm). However, the 
signature of ice in freezing leads can overlap that of all other 
classes, depending on the stage of ice development and 
whether or not the thin ice has undergone deformation. In 
the case of open water the signature depends upon wind 
strength and other variables. Therefore neither supervised 
nor unsupervised algorithm classification will be able to 
properly identify this class except for cases where new ice is 
uniformly dark (not roughened by frost flowers or deforma- 
tion) or where the wind speed is below a threshold of 
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Figure 3. Percent concentration from supervised classifi- 
cation versus maximum likelihood (ML) algorithm concen- 
tration for (a) MY ice, (b) combined FY ice (FYR plus FYS), 
(c) FYR, and (d) FYS. Regression lines are also plotted. 

approximately 3-5 m s-•. Results from the Lead Experiment 
(LeadEx) and other field experiments indicate that freezing 
ice in leads undergoes an evolution in backscatter with a 
range of the order of 10 dB over a period of hours [Onstott, 
1992]. 

A database of ice backscatter signatures was formed from 
the training areas. The database consists of one table of data 
for each of the following major ice types: MY, FYR, FYS, 
and NI/OW. The tables contain 180, 95, 88, and 42 samples, 
respectively. For each training area the mean backscatter 
value of the area, standard deviation of the backscatter 
value, incidence angle to the area, and latitude and longitude 
of the area were tabulated, so that trends in the data could be 
examined. A lookup table was generated from this database 
for comparison with the standard LUT. 

5. Comparison Results 
Scattergrams of ML algorithm concentrations plotted 

against supervised concentrations with best fit regression 
lines are shown in Figure 3. Each point represents the 
concentration of an ice type in a single 100-km square image. 
Results for ML iterative and MAP are similar to those in 

Figure 3 (identical for cases where the concentration of MY 
is below 50%), with differences we will note presently. 
Theoretically, the regression lines in Figure 3 should be 
arrived at in a manner which assumes error in x as well as in 

y. For convenience, however, we will assume no error in x 
(the difference in the regression line would be small). Statis- 
tics describing error for each algorithm version in terms of fit 
to the regression line and the difference between algorithm 
and supervised concentrations are given in Table 2. Note 
that the agreement between ML and supervised classifica- 
tion is quite good for MY ice, with variance in the supervised 
value explaining 94% of the variance in the algorithm results. 
There is a slight positive bias, with supervised classification 
finding, on average, about 4% more MY ice. The RMS 
difference (our primary measurement for error) of 7.3% is 
only slightly (4.5%) higher than the estimated error (or 
inconsistency) in supervised classification. Marginally better 
results are obtained with the ML iterative version. The mean 

difference between algorithm and supervised results is re- 
duced to 1%. The MAP version, on the other hand, merely 
biases the ML or ML iterative results by finding more MY 
ice owing to a more heavily weighted MY probability density 
function. If prior probabilities were added to the supervised 
classifier, then the MAP results would compare very well 
with supervised results. Prior probabilities are only useful to 
the extent that the probability density functions (i.e., back- 
scatter distributions) are uncertain. Probability density func- 
tions are fairly certain for MY and FYR ice. 

Figure 3b shows results for all FY ice (FYR and FYS 
combined). Because most images had very little new ice or 
open water, Figure 3b appears as the inverse of Figure 3a. 
The error statistics in Table 2 reflect this. Again, the ML 
iterative version performs best, with RMS error of only 6%. 
Figures 3c and 3d show the results for FYR and FYS, 
respectively. Here the agreement between supervised and 
algorithm results is poor. One reason for this is that the 

Table 2. Difference Statistics for Algorithm Versus Supervised Classification 

Regression Mean Standard Deviation RMS 
Ice Algorithm Regression Intercept, Difference, Difference, Difference, 

Type Type Slope % R 2 % % % 

MY ML 0.94 0.6 0.94 3.8 7.4 7.3 
iterative ML 0.96 1.5 0.95 1.0 6.1 6.2 
MAP 1.02 1.7 0.95 -3.3 7.2 7.3 

All FY ML 0.94 5.9 0.93 -4.2 7.4 7.3 
iterative ML 0.97 2.4 0.96 - 1.5 5.9 6.0 
MAP 1.02 -3.7 0.95 2.8 7.0 7.0 

FYR ML 0.98 4.5 0.73 -4.0 11.4 11.5 
iterative ML 0.99 1.9 0.75 - 1.7 10.7 11.1 
MAP 1.07 -3.9 0.75 2.6 11.9 12.0 

FYS ML 0.53 4.0 0.38 -0.2 10.1 8.5 
iterative ML 0.54 3.5 0.39 0.2 10.0 8.4 
MAP 0.54 3.5 0.39 0.2 10.0 8.4 

Ice type abbreviations are same as in Table 1, and FY is first-year ice. R is the correlation coefficient from the regression, a measure of 
goodness of fit. ML is maximum likelihood; MAP, maximum a posteriori. 
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terms "deformed" or "rough" and "undeformed" or 
"smooth" FY ice are subjective. The analyst attempted to 
identify two classes of FY ice in each image. Sometimes two 
classes were not obvious. In those cases where only one 
type of FY ice could be observed a judgment was made 
based on brightness and general appearance as to which type 
of FY ice the case matched, and the ice was classified 
accordingly. Such cases usually occurred at higher latitudes 
where the size of FY floes tended to be smaller. For those 

cases where the single ice type could not be easily catego- 
rized it was classified as FYR ice (these cases were excluded 
from the compilation of FYR class statistics). Since the 
analyst was basing the decision to call FY ice deformed or 
undeformed on factors in addition to brightness, such as a 
large concentration of apparent ridges, relatively poor agree- 
ment with algorithm classification is not surprising. If error 
as a percentage proportional to concentration is considered, 
then the gulf between the good agreement for MY/FY 
separation and poor agreement for FYR/FYS separation 
widens. 

Excluded from the data set in Figure 3 and Table 2 are 
outlying results from six images. In two of these images, FY 
ice in the fast ice shear zone north of Alaska was classified as 

MY ice. The remainder of the images were of areas of FY ice 
in the Chukchi Sea at about 69øN, which, probably because 
of its history in the seasonal ice zone, has a bright signature 
of -12 dB or higher. This ice is misclassified as MY by the 
algorithm, as shown in Plate 3a. These errors are predictable 
based on geographical region. For this reason, the proper 
domain of the algorithm is north of 73 ø . Our results show that 
while products south of 73 ø should be inspected for accu- 
racy, the algorithm performs well in the central Arctic, East 
Siberian, Beaufort, and Chukchi Seas. No dependency of 
error on latitude is evident when residuals are plotted. 
However, several of the northernmost images were deter- 
mined to be close to 100% MY ice by supervised classifica- 
tion. The algorithm finds about 8% FYR ice in these images 
(see Plate 3b). This is because pixels at the low end of the 
MY backscatter distribution are classed as FYR by the 
algorithm. Because the FY and MY LUT distributions 
overlap, the algorithm will erroneously find FY ice when 
only MY is present, unless all MY pixels are above the 
decision threshold of approximately -12 dB. As illustrated 
by Plate 3b, MY ice at latitudes between 75 ø and 80øN tends 
to have somewhat lower backscatter than MY ice farther 

south in this data set. Kwok and Cunningham [1994] verified 
the existence of an area of low backscatter at about this 

latitude in a much larger data set collected during the winters 
of 1991-1992 and 1992-1993. A possible explanation is that 
the lower backscatter may be due to higher fractional 
coverage of frozen melt ponds, while areas of higher back- 
scatter, such as at higher and lower latitudes in our data set, 
are related to more intense deformation. 

To summarize, the ML iterative algorithm in place at ASF 
produces results which are accurate to within 3% of the error 
inherent in this method of evaluation (about 3%) when 
separating MY from FY ice. The inclusion of prior proba- 
bilities does not improve classification accuracy. Although 
results are not presented here, all versions of the algorithm 
outperformed a minimum distance algorithm. (Minimum 
distance classification does not make use of class probability 
density functions.) The algorithm was less successful at 
separating two FY classes. The performance for the NI/OW 

class was not evaluated owing to the small number of 
samples. However, it is clear from several examples that ice 
in freezing leads can exhibit a range of backscatter signa- 
tures which overlaps all classes and that wind-roughened 
water is classified as MY ice by the algorithm because of its 
high backscatter. 

6. Classification Error and Backscatter 

Variability 

6.1. Within- and Between-Class Variability 

Obvious sources of classification error are between-class 

and within-class variability in the types being labeled. It is 
instructive therefore to ask what is the natural variability in 
the backscatter of FY and MY ice and how can it be 

expected to contribute to misclassification. A snapshot of 
backscatter variability from the study data set is shown in 
Figure 4. Each data point is the mean and standard deviation 
in backscatter from a single training set used in supervised 
classification. The distributions (by ice type) of the training 
set backscatter samples meet the chi-square test criterion for 
normality at a 95% confidence level. If this were not true, 
then the maximum likelihood algorithm would not be appro- 
priate. Table 3 gives the mean and standard deviation of the 
data points in Figure 4. Normal distributions based on the 
means and standard deviations from the sample backscatter 
column in Table 3 constitute what we will call the found ice 

type distributions (in contrast to the LUT distributions). For 
MY ice the mean backscatter is slightly below the LUT 
value of -10 dB, while the mean backscatter for FYR is 
slightly higher than the LUT value. Variability in the mean 
of FY ice is greater than that of MY ice. While Figure 4 
clearly shows the large overlap in backscatter between FYR 
and FYS ice, the mean values for FYR and FYS in Table 3 
have nearly the same mean values and 3-dB separation 
between class means as in the LUT. This indicates that the 

LUT values are appropriate, if appropriateness is judged by 
agreement, on average, with the judgment of a human 
interpreter. 

The theoretical error in ML classification caused by 
between-class and within-class variation is plotted in Figure 
5. In Figure 5a, error (expressed as the sum of P(MYIFY) 
and P(FYIMY), see Figure 2) rises as the difference between 
the class mean for MY (or FY) ice and the LUT value for 
that mean increases in a negative (or positive) direction. At 
a difference of 0 the error level shows what the probability of 
overall error is if the separation of mean backscatter be- 
tween MY and FY in the image is exactly equal to the LUT 
separation of 4 dB (and the standard deviations of the 
distributions match those in the LUT). When the means are 
closer by 1 standard deviation of the mean backscatter for 
MY ice from the training set (1 dB, see Table 3), the sum 
probability of error rises from 10% to 26%. Parenthetically, 
this plot also represents change in the probability of error 
due to inaccurately locating the mean MY backscatter during 
the Isodata clustering routine. 

A similar analysis (Figure 5b) shows the probability of 
overall error due to within-class variation. Here error rises 

as the width of the actual FYR backscatter distribution in an 

image increases relative to the LUT FYR standard devia- 
tion. At a difference equivalent to 1 standard deviation (0.3 
dB) in the standard deviation of FY backscatter from the 
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Plate 3. (a) Image (left) and classification error (right) for seasonal ice in the Chukchi Sea. This FY ice 
has a backscatter signature of about - 12 dB, which causes much of it to be erroneously classified as MY 
ice by the algorithm. The red area is where supervised classification finds FYR and the algorithm finds 
MY, the cyan area is where supervised classification finds FYS and the algorithm finds FYR, and the black 
area is where both methods agree. (b) Image (left) and classification error (right) of MY ice at about 80øN. 
The analyst found 2% FY ice, while the algorithm found 8% (see text). The backscatter of MY ice in this 
image is about -11.6 dB with a standard deviation of 1.3 dB, or somewhat lower with a broader 
distribution than MY ice farther south. The yellow areas are where supervised classification finds MY, 
while algorithm classification finds FYR. The black area shows where both methods agree. Copyright ESA 
1992. 

training areas the sum probability of error rises from 10% to 
13%. 

Of course, if a change in the mean backscatter for a class 
is accompanied by a matching change in the other classes, 
there is no net effect on classifier results. This is because the 
algorithm has a sliding scale feature in which the LUT is 
shifted relative to the mean backscatter of MY ice in the 
image. Figure 6 shows the mean backscatter and the stan- 

dard deviation of backscatter in decibels as a function of 
latitude. (The horizontal lines on the plots mark the LUT 
values. If the plots showed intensity, rather than dB, then 
the data points would be more evenly distributed around the 
horizontal lines.) Note that the backscatter of MY ice dips at 
about 77øN. That of FY ice exhibits a similar trend. How- 
ever, further analysis showed that the relationship between 
FY and MY backscatter is only weakly linear for sample 
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Figure 4. Mean and standard deviation of backscatter for each MY and FY training area in the data set. 
The downward trend in the plotted standard deviations is a result of weighting the standard deviation in 
intensity by the inverse of the mean backscatter value in order to express standard deviation in decibels. 

means and not at all linear for sample standard deviations. 
Shifts in the mean backscatter of MY and FY ice are 

therefore only weakly correlated in this data set. 
The sliding scale feature of the algorithm will improve 

classification accuracy for some images, but it does not have 
an effect on overall accuracy in this data set. The LUT 
distributions are plotted in Figure 7, as are the found 
distributions. The third trace in Figure 7 is of the LUT which 
would be applied (on average) to the data or, in other words, 
the LUT after an average shift of 0.2 dB to the left (since the 
mean found value for MY is -10.2, rather than -10 dB). 
Because the mean found backscatter for FYR ice is 0.4 dB 

higher than in the LUT, the shift would appear to worsen 
classification results. However, the distributions for any 
single image might look quite different from the found or 
average distributions, so it is better to assess potential error 
through regression analysis. Comparing the distributions in 
Figure 7 with the results of the regression analysis in Table 
2 does show, though, that substitution of the found distribu- 
tions for the LUT distributions would not yield an improve- 
ment in results. 

Table 3. Mean and Standard Deviation of the Training 
Set Sample Means and Sample Standard Deviations for the 
Backscatter Samples Shown in Figure 4 

Sample Backscatter Sample Standard Deviation 

Standard Standard 

Mean, Deviation, Mean, Deviation, 
Ice Type dB dB dB dB 

MY -10.2 1.0 1.2 0.3 
FYR -13.6 1.1 1.2 0.3 
FYS -17.0 1.2 1.5 0.6 

Ice type abbreviations are same as in Table 1. Statistics are 
computed in intensity and converted to decibels. 
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backscatter signature. Vertical bars mark error at 1 standard 
deviation off the LUT values (see Table 3). 



FETTERER ET AL.' SEA ICE TYPE MAPS 22,453 

-5 2/! , I •. 
Mean -1 o Std dev + (dS) (dS) 

65 70 75 80 85 65 70 75 80 85 

-10 

Mean -15 
(dB) 

(b) -•o• 7o ?• •o s• 

Std dev 

(dB) 

-lO 

Mean Std dev 

(dB) -20 x (dB) 

I (c) -• • • • 0 
65 70 75 80 85 

Latitude (øN) 

i i i 

+ .-H-+ 
•++ 

,•_ •. '1' +.1. !i• ¾ .+,. + ...... •..+._'_' _•+_ ......... __+_'_ .... 

I I I 
65 70 75 80 85 

Latitude (øN) 

Figure 6. Backscatter statistics derived from training sets selected by the analyst as a function of latitude 
for (a) MY, (b) FYR, and (c) FYS ice. 
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Figure 7. Backscatter distributions (plotted in intensity divided by a scale factor of 1.2 x 10 -5) from the 
LUT, from the averages of the training set samples (found distributions), and from the LUT shifted to 
match the mean found MY backscatter. 
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Figure 8. Backscatter distributions (plotted in intensity divided by a scale factor of 1.2 x 10 -5) derived 
from the average backscatter statistics of training sets used in the supervised classification of the image in 
Plate 1. The LUT distributions are also plotted. 
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Plate 4. Histograms of calibrated pixel values (amplitude) for an image from the March 29, 1992, pass. 
The top histogram is of amplitude values for the entire image. The minimum and maximum values in 
decibels are -40.00 and -4.04; the mean is -11.30 dB. The bottom histogram is of the area of FY ice 
marked by the red line. Here the minimum and maximum values in decibels are -26.58 and -8.97; the 
mean is -17.71 dB. Copyright ESA 1992. 
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Plate 5. Some of the dark ice in the image at left has become indistinguishable on the basis of backscatter 
from adjacent MY ice, as shown in the image from 3 days later on the right. The yellow lines mark distance 
in kilometers to identical points on each image and indicate that the ice has not undergone any obvious 
deformation. The area of increased backscatter is unusual in that areas of new and young ice for which 
such a change is expected are generally linear in shape in this region and season. Copyright ESA 1992. 

6.2. Separating Deformed From Undeformed Ice 
The classifier' s estimate of NI/OW concentration is known 

to be in error, at least some of the time, for the reasons 
discussed in section 4. More problematic is the issue of 
whether or not the classifier can distinguish two classes of 
FY ice consistently and of whether those classes correspond 
to identifiable geophysical characteristics of FY ice. For 
most images, two classes of FY ice (that is, of ice with 
backscatter lower than that of MY and higher than the noise 
floor but which, from contextual clues, does not appear to be 
new or young ice in a frozen lead) were obvious to the 
analyst performing supervised classification. The analyst 
called FYR ice that ice which was brighter overall, was 
heavily marked by a network of bright linear features sug- 
gesting ridges, or both. The analyst called FYS ice that ice 
which was of lower backscatter, with low apparent ridge 
density. Backscatter distributions of these two classes in a 
single image did not always approach the LUT distributions, 
however. Figure 8 shows LUT distributions with the distri- 
butions of FYR and FYS from manual analysis of the image 
in Plate 1. It is clear why the algorithm finds more FYS in 
this image than does the analyst. 

The problem of choosing appropriate distributions for two 
FY types becomes clear when a histogram of image back- 
scatter is displayed (Plate 4). The peaks for FY and MY ice 
are clearly separated. In separating the FY types, however, 
the algorithm is merely level slicing somewhere (determined 
by the LUT) along the FY peak. One possible classification 

improvement, then, is to classify using ML iterative for good 
MY/FY classification and then attempt to separate FY ice 
into two classes if bimodal distributions are in evidence 

when local histograms are examined. This possibility has not 
been investigated. Plate 4 also shows the distribution of 
backscatter within an alI-FY ice area. 

6.3. Summary 

Supervised classification is classification using a user- 
generated LUT, while classification by the algorithm uses an 
assumed LUT (shifted to account for the backscatter of MY 
ice in the image). If the backscatter distributions for the ice 
types are normal (and our analysis shows that they are), then 
the scatter of points in Figure 3 (quantified in Table 2) used 
to indicate error is the result of the difference between each 

image's backscatter distribution for each type and that of the 
assumed, unvarying LUT distributions. The varying means 
and standard deviations, from image to image, shift the 
position and overlap of the class distributions in a manner 
which results in the overall error rates shown by Figure 5. Of 
course, other factors besides natural within- and between- 
class variability contribute to class distributions which may 
be different than those of the LUT. The calibration could be 

wrong, but unless it is off by more than 2 dB this will not 
impair the performance of the algorithm owing to the sliding 
scale feature. The Isodata clustering routine could locate the 
position of the MY cluster inaccurately, resulting in an 
incorrect mean MY backscatter determination. The im- 
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Plate 6. The image sequence shows an example of the change in backscatter which can occur as lead ice 
freezes. Because the lead ice in the lower image is only 10 days old, it must be young ice, yet its 
backscatter signature falls within that of FY ice. Copyright ESA 1992. 

provement in the RMS difference of 1.1% between ML and 
ML iterative (which results in a more accurate determination 
of MY backscatter in the image by the clustering routine) is 
equivalent to a shift of less than 0.1 dB in the mean for MY 
ice. The difference between the MY cluster center found by 
the ML iterative version and the true center is likely to be 
even smaller than this. The order of this error is therefore 

likely to be small. While some of the discrepancy between 
algorithm and supervised classification is due to human 
inconsistency (about 2.8% for MY ice, equivalent to a 
change of about 0.15 dB from the MY value in the LUT), the 
majority of the approximately 6% discrepancy is due to 
between-class variability (as discussed in section 6.1). The 
width of the ice type class distributions remains fairly stable 
from image to image. The mean value for each class varies 
by a greater amount (see Table 3) and results in the between- 

class variability from image to image that introduces most of 
the algorithm error. 

7. Discussion and Conclusions 

The ASF classifier performs well when compared with 
human-guided classification; other work on the variability of 
ice signatures [Kwok and Cunningham, 1994] indicates that 
the good MY/FY separation obtained for our 3-week data set 
should be characteristic for winter in the perennial ice zone 
of the Beaufort, Chukchi, and Central Arctic. With how 
much confidence, though, can geophysical ice types be 
assigned to the MY, FYR, FYS, and NI/OW types labeled 
by the classifier? Again, freezing ice and open water are 
known to have signatures which can be identical to MY ice. 
In the winter, away from the marginal ice zone, however, the 
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concentration of these types which can mimic MY is ex- 
pected to be relatively low. Discriminating these types in the 
250-m resolution data may be a problem of small spatial 
extent, leading to mixed pixels, as well as one of no distinct 
radiometric signature. There is also evidence that some 
deformed FY or younger ice may have a backscatter signa- 
ture indistinguishable from MY at ERS 1 radar parameters 
[Rignot and Drinkwater, 1994]. If present in sufficient quan- 
tity, this ice could call into question the accuracy of MY 
estimates from ERS 1 SAR. On the other hand, if this FY ice 
appears like MY ice in the single-band radar data because it 
is sufficiently thick and desalinated, then for some applica- 
tions it may not be necessary to distinguish it from true MY 
ice. Plate 5 may be an example of how younger types can 
mimic MY. Plate 5 shows an image sequence in which ice 
with backscatter of-19 dB gains 7 dB over 3 days. The 
cause of the change is unknown. 

Further validation exercises are needed to establish how 

backscatter distributions correlate to ice types identified by 
thickness, age, or physical characteristics, such as salinity 
and surface roughness. Combining SAR with other satellite 
data may be useful for corroborating ice type estimates and 
for illuminating sources of error or variability in estimates 
from different sensors. Carsey [1985], for instance, used 
coincident Seasat SAR and passive microwave scanning 
multichannel microwave radiometer data to strengthen his 
conclusion that brightness temperature changes in the sum- 
mer pack are due primarily to changes in surface conditions, 
rather than to changes in open water concentration. Since 
satellite SAR and satellite passive microwave data are the 
only sources of winter MY concentration estimates over 
much of the Arctic, a comparison of estimates from these 
sensors is essential. SAR MY estimates tend to be lower 

than special sensor microwave/imager (SSM/i) estimates 
[Fetterer et al., 1993]. A case study (incomplete at this time) 
shows that MY concentration from SSM/i and SAR differs 

by an amount that depends on geographic location but 
averages about 15%. Steffen et al. [1993] examined a winter 
ERS 1 SAR image coincident with Landsat thematic mapper 
data. While noting that gray ice and nilas are indistinguish- 
able from FY ice in the SAR image, they suggested that 
combining SAR with Landsat data would allow robust 
classification. This sort of approach is necessary to resolve 
the question of how much new or young ice is being 
misclassified (by both supervised and algorithm classifica- 
tion) as FY or MY ice. The extent of the error would depend 
on how much divergence the ice has recently undergone and 
would therefore vary in time and space. 

Combining sensor data is one approach to overcoming the 
limitations of single-channel data. Making use of temporal 
clues is another, although it is difficult to envision how this 
might be done automatically. Plate 6 shows how ice which is 
difficult to distinguish from FY or MY appears to be a form 
of younger ice when earlier (or later) imagery of the same ice 
is examined. 

To summarize, there is a need to increase confidence in 
the ASF ice type product through additional validation and 
comparison work. On the basis of the work presented here 
we recommend that future GPS algorithm designs not at- 
tempt to distinguish two FY ice types and that alternative 
methods of finding the concentration of NI/OW be explored. 
With that stated, the growing ice type product archive at 
ASF, whether used (when large enough) as a climatology or 

for a temporal sequence of ice conditions, is of great value 
for testing the results of air-ice-ocean dynamic and thermo- 
dynamic models with observations. The description of phys- 
ical processes which go into a model can only be assumed 
correct if observations of mass balance (represented by the 
ice type maps or gridded concentration fields) are consistent 
with model predictions. For instance, if a model predicts 
more summer ice than the observations of MY at freeze-up 
show, then something is wrong. When combined with esti- 
mates of divergence (readily derived from SAR image se- 
quences), ice type maps are an observational tool with which 
to explore the relative roles of heat flux and ice deformation 
in changing ice thickness distributions (see, for example, 
Thorndike [1992]). Any winter loss of MY ice must be 
accounted for by ridging or by export through the Fram 
Strait. Furthermore, the broad thickness classes implied by 
the FY/MY separation (corresponding roughly to less than 
and greater than 200 cm) are an improvement over the 
parameterization of a uniform ice cover often used in global 
circulation models. Thickness fields from ice prediction 
models should roughly correlate with contoured MY con- 
centrations. Finally, ASF MY estimates are an independent 
data source for Kalman filtering or other methods of data 
blending in models (see Collins [1992] and Rothrock and 
Thomas [1992] for a discussion of data blending). 
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